Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Table S1 Selected bond lengths (Angstroms), bond angles (degrees), and dihedral angles (degrees) (computed using the B3LYP functional) for the Cu(I) dyes, in solvent. Expt denotes the experimental values (Ref. 11,14) for the corresponding homoleptic dyes of type $[CuL_2]^+$, where L=6,6'-dimethyl-2,2'-bipyridine-dimethylformate).

Parameter	Dye1	Dye2	Dye3	Dye4	Dye5	Dye6	expt (Ref. 11,14)
Cu-N1	2.08	2.08	2.09	2.09	2.08	2.09	2.01
Cu-N2	2.08	2.08	2.09	2.08	2.08	2.08	2.01
Cu-N3	2.08	2.07	2.09	2.09	2.10	2.09	2.04
Cu-N4	2.08	2.07	2.09	2.09	2.10	2.10	2.00
N1-Cu-N2	80.08	80.24	80.34	80.37	80.33	80.37	80.93
N2-Cu-N3	125.99	125.55	119.92	119.84	119.72	120.18	119.26
N3-Cu-N4	81.11	80.78	81.09	81.14	80.95	80.01	81.21
N1-Cu-N4	125.95	126.03	119.39	119.09	119.64	118.71	134.76
N2-Cu-N4	125.25	125.64	131.88	131.87	131.90	132.01	122.14
N1-Cu-N3	125.05	125.26	131.70	132.04	131.80	132.13	123.77
$ au_4$	0.77	0.79	0.68	0.68	0.68	0.68	-

Figure S1 Projected Density of States (PDOS)(using the B3LYP functional) of the Cu(I) dyes, in solvent.

Figure S2 Kohn- Sham energy levels (using the B3LYP functional) for the Cu(I) dyes, in solvent.

Figure S3 Optical Absorption Spectra (using the B3LYP functional) of the Cu(I) dyes, in solvent.

Table S2 Optical data corresponding to the theoretical absorption spectra (using the B3LYP functional) for the Cu(I) dyes, in solvent. ESN denotes the transition from the single ground state S_0 to the singlet excited state S_N . Only the transitions with oscillator strength $f \ge 0.1$ have been included in the table.

System	Transitions	Excitation energy(eV)	Wavelength(nm)(λ)	Oscillator strength (f)
Dye1	$ES2(S_0 \rightarrow S_2)$	2.32	533.95	0.20
	$ES10(S_0 \rightarrow S_{10})$	2.99	413.88	0.06
	$ES21(S_0 \rightarrow S_{21})$	3.74	331.02	0.18
	ES22($S_0 \rightarrow S_{22}$)	3.74	330.77	0.11
Dye2	$ES2(S_0 \rightarrow S_2)$	2.31	534.88	0.29
	$ES9(S_0 \rightarrow S_9)$	2.85	433.65	0.08
	$ES22(S_0 \rightarrow S_{22})$	3.59	344.64	0.36
	ES23($S_0 \rightarrow S_{23}$)	3.68	336.75	0.27
	ES24($S_0 \rightarrow S_{24}$)	3.75	330.19	0.28
Dye3	$ES1(S_0 \rightarrow S_1)$	1.84	672.74	0.04
	$ES2(S_0 \rightarrow S_2)$	2.21	559.77	0.20
	$ES23(S_0 \rightarrow S_{23})$	3.55	349.25	0.19
	$ES28(S_0 \rightarrow S_{28})$	3.71	333.67	0.30
Dye4	$ES1(S_0 \rightarrow S_1)$	1.84	673.53	0.07
	$ES2(S_0 \rightarrow S_2)$	2.15	575.64	0.24
	$ES4(S_0 \rightarrow S_4)$	2.35	526.83	0.08
	$ES8(S_0 \rightarrow S_8)$	2.67	463.25	0.18
	$ES11(S_0 \rightarrow S_{11})$	2.90	426.15	0.01
	$ES12(S_0 \rightarrow S_{12})$	2.93	422.96	0.28
	$ES21(S_0 \rightarrow S_{21})$	3.19	388.39	0.32
	$ES23(S_0 \rightarrow S_{23})$	3.23	383.53	0.11
	$ES27(S_0 \rightarrow S_{27})$	3.39	365.40	0.16
	$ES28(S_0 \rightarrow S_{28})$	3.44	360.39	0.71
	$ES29(S_0 \rightarrow S_{29})$	3.50	353.54	0.15
	$ES31(S_0 \rightarrow S_{31})$	3.53	350.27	0.25
	$ES33(S_0 \rightarrow S_{33})$	3.56	348.12	0.18
Dye5	$ES1(S_0 \rightarrow S_1)$	1.90	649.22	0.02
	$ES2(S_0 \rightarrow S_2)$	2.29	540.39	0.15
	$ES22(S_0 \rightarrow S_{22})$	3.67	337.33	0.19
	$ES26(S_0 \rightarrow S_{26})$	3.76	329.65	0.04
Dye6	$ES1(S_0 \rightarrow S_1)$	1.90	650.20	0.06
	$ES2(S_0 \rightarrow S_2)$	2.22	558.49	0.19
	$ES7(S_0 \rightarrow S_7)$	2.74	452.43	0.19
	$ES10(S_0 \rightarrow S_{10})$	2.94	420.91	0.12
	$ES11(S_0 \rightarrow S_{11})$	2.95	419.50	0.29
	$ES18(S_0 \rightarrow S_{18})$	3.19	387.65	0.27
	$ES20(S_0 \rightarrow S_{20})$	3.23	383.53	0.11
	$ES24(S_0 \rightarrow S_{24})$	3.39	365.40	0.16
	$ES25(S_0 \rightarrow S_{25})$	3.44	360.39	0.71
	$ES26(S_0 \rightarrow S_{26})$	3.50	353.54	0.15
	$ES27(S_0 \rightarrow S_{27})$	3.51	352.53	0.06

System	Transitions	Excitation energy(eV)	Wavelength(nm)(λ)	Oscillator strength (f)
Dye1	$ES1(S_0 \rightarrow S_1)$	2.67	462.80	0.00
	$ES2(S_0 \rightarrow S_2)$	3.08	402.94	0.20
	$ES13(S_0 \rightarrow S_{13})$	4.20	295.15	0.40
	$ES24(S_0 \rightarrow S_{24})$	4.92	251.75	0.75
Dye2	$ES1(S_0 \rightarrow S_1)$	2.72	455.20	0.00
	$ES2(S_0 \rightarrow S_2)$	3.09	400.81	0.29
	$ES9(S_0 \rightarrow S_9)$	3.86	320.92	0.19
	$ES16(S_0 \rightarrow S_{16})$	4.20	295.16	0.40
	$ES19(S_0 \rightarrow S_{22})$	4.34	285.67	0.31
	$ES20(S_0 \rightarrow S_{22})$	4.47	277.08	0.43
	$ES22(S_0 \rightarrow S_{22})$	4.08	204.98	0.28
Dye2a	$ESI(S_0 \rightarrow S_1)$	2.31	535.51	0.00
	$ES2(S_0 \rightarrow S_2)$	3.00	404.74	0.29
	$ESS(S_0 \rightarrow S_5)$	3.02	342.37	0.14
	$ESO(S_0 \rightarrow S_8)$	3.70	32/.//	0.12
	$ES(S_0 \rightarrow S_0)$ ES15(S_0 $\rightarrow S_{12}$)	4 20	205.02	0.38
	$FS19(S_0 \rightarrow S_{10})$	4 33	285.90	0.25
	$FS24(S_0 \rightarrow S_{24})$	4 76	260.17	0.53
Dve2h	$\frac{1}{\text{ES1}(S_0 \rightarrow S_1)}$	2.44	508.03	0.00
Dyczb	$ES3(S_0 \rightarrow S_2)$	3.23	383.83	0.13
	$ES8(S_0 \rightarrow S_0)$	3.78	327.83	0.11
	$ES15(S_0 \rightarrow S_{15})$	4.19	296.07	0.17
	$ES17(S_0 \rightarrow S_{17})$	4.21	294.60	0.30
	$ES18(S_0 \rightarrow S_{18})$	4.22	293.99	0.28
	$ES19(S_0 \rightarrow S_{19})$	4.37	283.35	0.56
	$ES22(S_0 \rightarrow S_{22})$	4.49	275.98	0.40
	$ES31(S_0 \rightarrow S_{31})$	4.92	251.66	0.30
Dye3	$ES1(S_0 \rightarrow S_1)$	2.66	464.64	0.03
2	$ES2(S_0 \rightarrow S_2)$	3.07	403.98	0.13
	$ES11(S_0 \rightarrow S_{11})$	4.09	303.41	0.18
	$ES15(S_0 \rightarrow S_{15})$	4.20	295.43	0.32
	$ES17(S_0 \rightarrow S_{17})$	4.27	290.19	0.36
	$ES25(S_0 \rightarrow S_{25})$	4.80	258.19	0.60
Dye4	$ES1(S_0 \rightarrow S_1)$	2.67	462.67	0.06
	$ES2(S_0 \rightarrow S_2)$	3.01	411.94	0.19
	$ES3(S_0 \rightarrow S_3)$	3.24	382.83	0.15
	$ES4(S_0 \rightarrow S_4)$	3.47	356.98	0.21
	$ES5(S_0 \rightarrow S_5)$	3.55	348.88	0.60
	$ES6(S_0 \rightarrow S_6)$	3.57	347.00	0.46
	$ES10(S_0 \rightarrow S_{10})$	3.83	323.36	0.97
	$ES16(S_0 \rightarrow S_{16})$	4.13	300.47	0.20
	$ES18(S_0 \rightarrow S_{18})$	4.19	295.69	0.13
	$ES19(S_0 \rightarrow S_{19})$	4.21	294.78	0.25
	$E S 24(S_0 \rightarrow S_{24})$	4./1	203.03	0.1/
DrieF	$\frac{1}{1000} \rightarrow 5_{34}$	4.70 2.70	450.00	0.50
Dyes	$E31(S_0 \rightarrow S_1)$	2./0	407.09	0.05
	$E_{32}(S_0 \rightarrow S_2)$ $E_{32}(S_1 \rightarrow S_2)$	3.04 4.02	407.22	0.14
	$FS15(S_0 \rightarrow S_{12})$	4.02	200.03	0.13
	$FS17(S_0 \rightarrow S_{15})$	4 26	297.41	0.20
	$FS23(S_0 \rightarrow S_{22})$	4 71	263 11	0.72
	$ES25(S_0 \rightarrow S_{23})$	4 78	259.30	0.39
Dve6	$\frac{1020(00 + 025)}{\text{ES1}(S_0 \rightarrow S_1)}$	2.70	458 24	0.11
2,00	$FS2(S_0 \rightarrow S_2)$	2.98	416.26	0.16
	$ES3(S_0 \rightarrow S_2)$	3.21	385.65	0.27
	$ES5(S_0 \rightarrow S_5)$	3.55	348.85	0.99
	$ES9(S_0 \rightarrow S_0)$	3.82	324.09	1.07
	$ES17(S_0 \rightarrow S_{17})$	4.09	303.39	0.13
	$ES18(S_0 \rightarrow S_{18})$	4.14	299.19	0.29
	$ES25(S_0 \rightarrow S_{25})$	4.63	267.69	0.27
	$ES40(S_0 \rightarrow S_{40})$	4.99	249.53	0.29

Table S3 Optical data corresponding to the theoretical absorption spectra (using the CAM-B3LYP functional) of the Cu(I) dyes, in solvent. ESN denotes the transition from the singlet ground state S_0 to the singlet excited state S_N . Only the transitions with oscillator strength $f \ge 0.1$ have been included in the table.

Figure S4 Optical Absorption Spectra (using the CAM-B3LYP functional) for the Cu(I) dyes, in gas phase.

Table S4 Optical data corresponding to the theoretical absorption spectra (using the CAM-B3LYP functional) for the Cu(I) dyes, in gas phase.	ESN
denotes the transition from the single ground state S $_0$ to the singlet excited state S $_N$. Only the transitions with oscillator strength f ≥ 0.1 have	been
included in the table.	

System	Transitions	Excitation energy(eV)	Wavelength(nm)(λ)	Oscillator strength (f)
Dye1	$ES1(S_0 \rightarrow S_1)$	2.79	443.33	0.00
	$ES2(S_0 \rightarrow S_2)$	3.21	386.57	0.16
	$ES13(S_0 \rightarrow S_{13})$	4.32	287.05	0.30
	$ES27(S_0 \rightarrow S_{27})$	5.03	246.57	0.58
	$ES33(S_0 \rightarrow S_{33})$	5.22	237.50	0.18
Dye2	$ES1(S_0 \rightarrow S_1)$	2.79	443.29	0.00
2	$ES2(S_0 \rightarrow S_2)$	3.18	390.05	0.24
	$ES9(S_0 \rightarrow S_0)$	3.94	314.41	0.20
	$ES16(S_0 \rightarrow S_{16})$	4.32	286.93	0.32
	$ES17(S_0 \rightarrow S_{17})$	4.34	285.69	0.28
	$ES18(S_0 \rightarrow S_{18})$	4.38	283.10	0.14
	$ES24(S_0 \rightarrow S_{24})$	4.84	256.37	0.44
Dve3	$ES1(S_0 \rightarrow S_1)$	2.75	450.23	0.03
2900	$ES11(S_0 \rightarrow S_{11})$	4.10	302.23	0.11
	$ES16(S_0 \rightarrow S_{16})$	4 29	288.80	0.20
	$ES17(S_0 \rightarrow S_{17})$	4.32	286.94	0.30
	$ES20(S_0 \rightarrow S_{20})$	4 53	273 63	0.16
	$ES22(S_0 \rightarrow S_{20})$	4 79	258 81	0.25
	$ES25(S_0 \rightarrow S_{25})$	4 83	256.48	0.38
	$ES36(S_0 \rightarrow S_{25})$	5 13	241.26	0.44
Dve4	$\frac{ESI(S_0 \rightarrow S_1)}{ESI(S_0 \rightarrow S_1)}$	2.72	454.85	0.06
Djei	$ES2(S_0 \rightarrow S_2)$	3.06	405 54	0.17
	$ES3(S_0 \rightarrow S_2)$	3 28	377.85	0.14
	$ES4(S_0 \rightarrow S_4)$	3 50	354 24	0.26
	$FS5(S_0 \rightarrow S_5)$	3 52	352 64	0.92
	$ES8(S_0 \rightarrow S_0)$	3.82	324 18	0.81
	$ES16(S_0 \rightarrow S_{1c})$	4 18	296.60	0.10
	$ES19(S_0 \rightarrow S_{10})$	4 31	287 93	0.23
	$ES21(S_0 \rightarrow S_{21})$	4 42	280.20	0.11
	$FS23(S_0 \rightarrow S_{22})$	4 56	271 72	0.11
	$ES28(S_0 \rightarrow S_{23})$	4 76	260.16	0.22
Dve5	$\frac{1}{1} ES1(S_0 \rightarrow S_1)$	2.78	444 42	0.05
Djee	$FS16(S_0 \rightarrow S_{16})$	4 28	289 34	0.17
	$ES17(S_0 \rightarrow S_{17})$	4 30	288 31	0.36
	$FS20(S_0 \rightarrow S_{20})$	4 48	276.75	0.16
	$FS25(S_0 \rightarrow S_{25})$	4 76	259.94	0.12
	$ES26(S_0 \rightarrow S_{25})$	4 78	259.17	0.81
	$ES27(S_0 \rightarrow S_{27})$	4 82	256.85	0.14
	$ES30(S_0 \rightarrow S_{20})$	4 91	252.28	0.32
	$ES37(S_0 \rightarrow S_{27})$	5.10	242.67	0.26
	$ES38(S_0 \rightarrow S_{38})$	5.12	242.13	0.36
Dve6	$ES1(S_0 \rightarrow S_1)$	2.75	449.25	0.10
-)	$ES1(S_0 \rightarrow S_1)$	2.76	449.25	0.10
	$ES2(S_0 \rightarrow S_2)$	3.04	407.63	0.15
	$ES3(S_0 \rightarrow S_2)$	3.27	378.74	0.23
	$ES4(S_0 \rightarrow S_4)$	3.47	357.02	0.18
	$ES5(S_0 \rightarrow S_5)$	3.52	352.51	0.93
	$ES9(S_0 \rightarrow S_0)$	3.82	324.91	0.91
	$ES19(S_0 \rightarrow S_{10})$	4.29	288.90	0.24
	$ES23(S_0 \rightarrow S_{23})$	4.53	273.14	0.10
	$ES25(S_0 \rightarrow S_{25})$	4 61	268.48	0.10
	$ES31(S_0 \rightarrow S_{21})$	4.75	260.48	0.16
	$ES32(S_0 \rightarrow S_{22})$	4 77	259.88	0.23
	$ES35(S_0 \rightarrow S_{25})$	4.83	256.66	0.10
	$FS37(S_0 \rightarrow S_{27})$	4 91	252.00	0.33
	$1007(00 \rightarrow 037)$	1.74	232.77	0.00

Table S5 Computed light harvesting efficiency (LHE) (using the B3LYP functional), in the first two singlet excited states, for the Cu(I) dyes, in solvent.

Copper (I) Dye	f_1	LHE1	f_2	LHE ₂	Average LHE
Dye1	0.00	0.00	0.20	0.37	0.18
Dye2	0.00	0.00	0.29	0.49	0.24
Dye3	0.04	0.08	0.20	0.36	0.22
Dye4	0.07	0.15	0.24	0.42	0.29
Dye5	0.02	0.06	0.15	0.29	0.18
Dye6	0.06	0.12	0.19	0.35	0.24

Figure S5 Natural transition orbitals (NTOs) (using the B3LYP functional), showing the charge transfer upon light absorption, for the Cu(I) dyes, Dye1 (left panel) and Dye2 (right panel), in solvent.

Figure S6 Natural transition orbitals (NTOs) (using the B3LYP functional), showing the charge transfer upon light absorption, for the Cu(I) dyes, Dye3 (left panel) and Dye4 (right panel), in solvent.

Figure S7 Natural transition orbitals (NTOs) (using the B3LYP functional), showing the charge transfer upon light absorption, for the Cu(I) dyes, Dye5 (left panel) and Dye6 (right panel), in solvent.

Dyes	excited	ed Hole								Particle															
	state	Cue	Metal	Cue	C-8	Anchorii C-p	ng ligand	N-p	C-8	Ancillai	ry ligand	N-p	Clie	Metal	Cu-	C-8	And C-D	horing lig	and N-p	0-n	C-8	And C-D	cillary lig	and N-p	S-n
		s	p	d		СP			0.5	C P		p	s	p	d		СP		p	0 P		СР			Сp
Dve1	ES1		2.19	73.62		2.19	4.39	17.58							3.44		57.47		32.18	4.59		2.29			
	ES2			80.8		2.1				2.1		14.9			2.2		66.7		28	3.2					
	ES13			2.2		97.8									2.2		66.3		26.1	5.4					
	ES19 ES24			15.2		76.1		8.7		00.22					1.00							100		24.17	
Dve2	ES1		2.15	72.04		2.15	4.30	17.20		90.32					3.22		64.51		30.11			2.15		24.17	
	ES2			82.6		2.2					4.3	10.9			4.1		63.9		26.8	3.1		2.1			
	ES9			67.8				16.1		14.9		1.1					10		4.3			73.9		11.6	
	ES16 FS10		11	3.2		96.8				65.9		8.8			2.2		66.7		25.8	5.4		88.6		0.1	23
	ES20			8.3						85.4		6.2										85.4		10.1	4.5
	ES22			2.15						97.84					1.11							75.55		22.22	1.11
Dye2	a ES1			77.01			4.59	18.39			4.2	10.0			2.1		59.34		30.76	3.29		6.59			
	ES2 ES5		3.5	63.2		2.2		11.5		21.8	4.5	3.4			1.1		05.5		27.4	3.2		75.3		23.6	
	ES8		3.5	61.2						12.9		22.4										82.7		17.3	
	ES9		1.1	61.4			2.3	6.8		20.4		8					11.5		5.1			79.5		3.8	
	ES15 FS10			2.2		97.8				51.08					2.2		60.2 67.46		25.8	5.4		6.4 7.22			
	ES24			17.5		82.5				51.00					2.40		07.40		20.91	0.02		73.11		24.73	
Dye2	b ES1		2.32	76.74			4.65	16.27									60.67		29.21	1.12		8.98			
	ES3		2.1	78.7		2.1		14.9		2.1	11	71			3.2		45.7		21.3	1.1		20.2	16.4	8.5	
	ES15			36			1.2	7		48.8	1.1	7					2.6					85.9	10.4	11.5	
	ES17			30.2				5.8		59.3		7										90.4		9.6	
	ES18		4.2	70.8		10.4		4.2		2.1		8.3					62.4		18.3	8.6		10.8		4.50	
	ES19 ES22			5.37		45.65		4.34		94.62							98.85					95.40		4.59	
	ES31			18.88		73.33		2.22				6.66										95.65		4.34	
Dye3	ES1 ES2		2.98	77.01			2.29	18.39		4.2	4.2	12.0			2.19		68.13		28.57	1.09		40.0		12.2	
	ES11		5	74.1				4.7		1.2	2.4	12.9			1		20.0		0.1		2	49.9 82.2		11.8	
	ES15		3.2	96.8											2.1		61.7		23.4			12.8			
	ES17			44.9		70 70	6.00			55.1		0.40		4.1	2		07		11			69.4		24.5	
Dve4	ES25 ES1		2.32	76.74		/0./3	2.32	16.27		20./3		2.43			3		37 61.62		27.90	2.32		42		/	
	ES2		3.4	74.2		1.1	2.2	7.9							1.2		34.1		16.5			36.5		11.8	
	ES3		2.2	80.2		2.2	2.2	5.5			2.2	5.5			3.6		52.4		24.4			12.2		7.3	
	ES4 ES5	21	53	79.3		1.2	2.4	11		4.9		1.2		1	3.2	1	23.6		27.4	53	1	48.6		13.9	
	ES6	2.3	6.8	85.2				3.4		1.1		1.1			2.2		62.2		25.6	2.2	1.1	5.6		1.1	
	ES10			18		5.6		1.1		75.3					1.1		18.9		15.6			60			4.4
	ES16			41.3		26.1				32.6			22	2.2		20.1	26.7	14	12.2		40.7	46.7	14	12.2	
	ES19			3.3		96.7				10.0			2.5	2.1		27.1	68.1	14	23.4	5.3	+0.7	1.1	14		
	ES24					90.58		9.41									20.51					79.48			
Dvo5	ES34 ES1		2 27	75				20.45		45		55			2 70		55.00		31.09			87.35		3.44	9.19
Dyes	ES2		3.2	/5				20.45	4.3	4.3	15.1	2.07		1.1	2.70	8.4	33.90	6.3	51.00		63.2	10.01	21.1		
	ES12		3.5	75.3				4.7		2.4	2.4	11.8									1.1	81.5		17.4	
	ES15			2.1		97.8									2		72.7		20.2	5		76.2		22.7	
	ES20			80		09.2		88.9		33.2		77.8			1						3.3	79.8		16.8	
	ES23			43.33		40		2.22		14.44							42.85		10.98	4.39		41.75			
	ES25		2.4	70.6	3.90	26.13	0.4	9.09		64.77		0.4					43.82		16.85	4.49		34.83			
Dye6	ES1 ES2		2.4	73.9			2.4	14.3		2.3	4.5	2.4			2.3		53.4 2.3		25			13.6 70.4		2.3	
	ES3			52.2		17.4		2.2		22.8		5.4		1	80.2				1			2.2	2.2	13.2	
	ES5			10.5		41.9				40.7		7			1		15.4					63.7		15.4	4.4
	ES9 ES17	1 1 1		12.9		44.7				38.8		3.6			1.2		18.8					60 67.8		15.3	4.7
	ES18			2.2		97.8									2		56.2		21.8	2		17.7		27.0	
	ES25			33.69		58.69		5.43		2.17							48.38		10.75	4.30		36.55			
	ES40		1						l	29.48		70.57										90.69		8.13	1.16

Table S6 Percentage contributions of the orbitals involved in the charge transfer upon light absorption (using the CAM-B3LYP functional) for the Cu(I) dyes, in solvent.