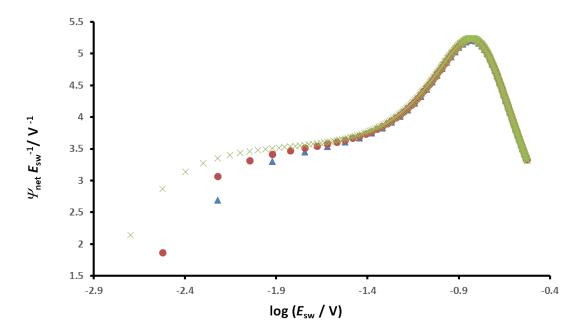
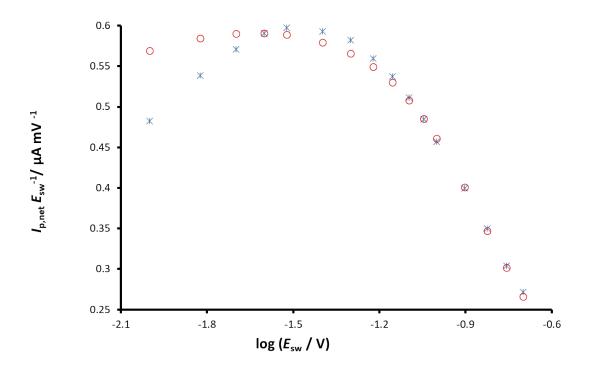
Supporting Information

Electrode kinetics from a single experiment: Multi-amplitude analysis in square-wave chronoamperometry

Dariusz Guziejewski^a*, Leon Stojanov^b, Zuzanna Zwierzak^a, Richard G. Compton^c, Valentin Mirceski^{a,b,d}*


^a Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland

^b Institute of Chemistry, Faculty of Natural Sciences and Mathematics, "Ss Cyril and Methodius" University in Skopje, P.O. Box 162, 1000 Skopje, Republic of North Macedonia


^c Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, Great Britain

^d Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Republic of North Macedonia

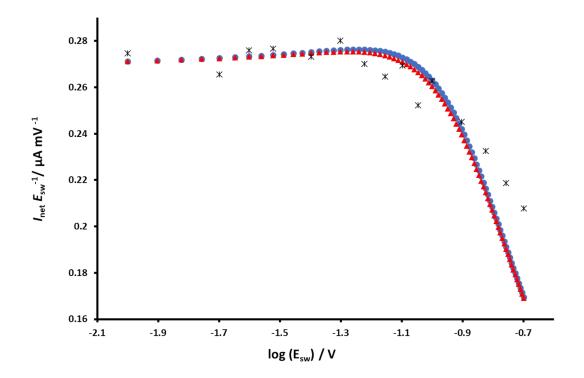

E-mail: dguziejewski@uni.lodz.pl, valentin@pmf.ukim.mk;

Fig. S1. Theoretical simulations in MA-SWCA for a quasireversible electrode reaction of a dissolved redox couple showing the effect of the amplitude increment in the amplitude-based quasireversible maximum. The values for the amplitude increment are: $\Delta E_{sw} = 1 \text{ mV}$ (asterisks), 3 mV (circles) and 6 mV (triangles). The other conditions are identical as for Fig. 2 (A).

Fig. S2. Fitting of the theoretical and experimental data of the amplitude-based quasireversible maximum in SWV for a hexacyanoferrate redox system in 0.1 mol/L KNO₃ supporting electrolyte at a glassy carbon electrode. Experimental (asterisks) and theoretical data (circles), simulated for the standard rate constant $k_s = 5.0 \times 10^{-3}$ cm s⁻¹; diffusion coefficient $D = 5 \times 10^{-6}$ cm² s⁻¹; anodic electron transfer coefficient $\alpha = 0.55$; amperometric constant $A = 54 \ \mu A \ (A = I \ \Psi \)$, and temperature T = 291.15 K. The other conditions for both theory and experiment are: frequency f = 25 Hz; bulk concentration of both [Fe(CN)₆]⁴⁻ and [Fe(CN)₆]³⁻ is c = 0.25 mmol/L and the step potential increment $\Delta E = 5$ mV.

Fig. S3. Fitting of the theoretical (circles and triangles) and experimental data (asterisks) of the amplitude-based quasireversible maximum in MA-SWCA for a hexacyanoferrate redox system in 0.1 mol/L KNO₃ supporting electrolyte at a glassy carbon electrode. Theoretical data are simulated for different anodic electron transfer coefficients $\alpha = 0.45$ (red triangles) and $\alpha = 0.50$ (blue circles), with the standard rate constant $k_s = 3.0 \times 10^{-3}$ cm s⁻¹, and amperometric constant $A = 3.4 \times 10^{-5}$ A (the values for $\alpha = 0.55$ are virtually identical as for $\alpha = 0.45$). The other conditions for both theory and experiment are identical as in Fig. S2.