Supplementary information

Antioxidant and Copper Chelating Power of New Molecules Proposed as Combined Multiple Targets Agent Against Alzheimer's Disease

Maciej Spiegel¹, Tiziana Marino¹, Mario Prejanò² and Nino Russo¹

¹ Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende (CS), Italy

² Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden

Table S1. Bond distances (Å) in the different complexes for $L_1(L_1^{-})$ and $L_2(L_2^{-})$.

$L_1 (L_1^-)$					
Bond	Distance	Bond	Distance	Bond	Distance
N3		0,0		N,O	
Cu-N ₁	2.420 (2.208)	Co-O ₁	1.931 (1.911)	Cu-N ₁	2.273 (2.131)
Cu-N ₄	2.068 (2.228)	Cu-O ₆	2.862 (2.281)	Cu-N ₄	2.048 ((2.254)
Cu-N ₇	2.098 (2.015)	Cu-O _{w1}	2.264 (2.428)	Cu-N ₇	2.193 (2.035)
Cu-O _{w1}	2.148 (2.015)	Cu-O _{w2}	2.433 (2.335)	Cu-O ₁	2.812 (1.957)
Cu-O _{w2}	2.187 (3.055)	Cu-O _{w3}	2.086 (2.152)	Cu-O _{w1}	2.084 (3.171)
Cu-O _{w3}	3.086 (3.508)	Cu-O _{w4}	2.196 (2.375)	Cu-O _{w2}	2.355 (3.292)
L ₂ (L ₂ ⁻)					
Bond	Distance	Bond	Distance		
N4		0,0			
Cu-N ₁	3.699 (3.712)	Co-O ₁	2.536 (1.918)		
Cu-N ₄	2.085 (2.098)	Cu-O ₆	2.844 (2.343)		
Cu-N ₇	3.641 (3.638	Cu-N ₇			
Cu-N ₁₀	2.073(2.066)	Cu-O _{w1}	2.033 (2.537)		
Cu-O _{w1}	2.051 (2.093)	Cu-O _{w2}	2.244		
Cu-O _{w2}	2.103 (3.827)	Cu-O _{w3}	2.275 (2.031)		
Cu-O _{w3}	(2.098)	Cu-O _{w4}	1.993 (2.423)		

L₁(N3)

L₁(N3,O)

L₁(0,0)

L₁-(N3)

L₁-(N3,O)

L₁-(0,0)

b

а

Figure S1. Spin density distribution for $Cu-L_1$ (a) and $Cu-L_1^-$ (b) complexes.

L₂(N4)

L₂ (O)

b

Figure S2. Spin density distribution for $Cu-L_2$ (a) and $Cu-L_2^-$ (b) complexes.

Figure S3. Molecular electrostatic potential maps for neutral and anionic considered species.