Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

## **Supporting Information**

## Structural engineering brings new electronic properties to Janus ZrSSe and

## **HfSSe monolayers**

Xinxin Wang, Shuhui Zhang, Yuanyuan Wang, Shiqiang Yu, Baibiao Huang, Ying

Dai,\* and Wei Wei\*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

\* Corresponding authors: daiy60@sdu.edu.cn (Y. Dai), weiw@sdu.edu.cn (W. Wei)

|              | AA    | AA'   | AB    | AB'   | A'B   |
|--------------|-------|-------|-------|-------|-------|
| <i>d</i> (Å) | 2.90  | 3.55  | 3.03  | 3.57  | 2.97  |
| $E_b(eV)$    | -1.98 | -1.89 | -1.96 | -1.93 | -2.01 |
| $E_g(eV)$    | 0.68  | 0.65  | 0.61  | 0.53  | 0.55  |

**Table S1** Optimized interlayer distance (d), binding energy  $(E_b)$  and band gap  $(E_g)$  of

the out-of-plane vdW heterostructures of T-ZrSSe/T-HfSSe.

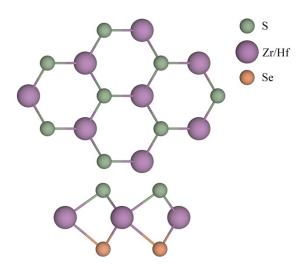
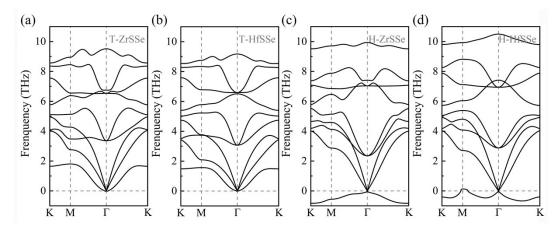
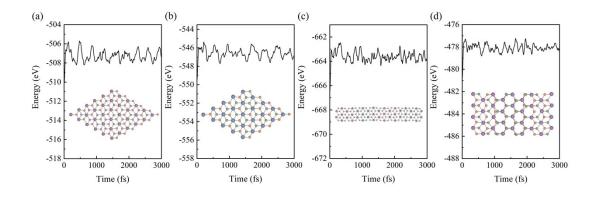
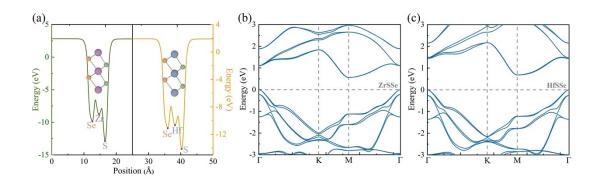
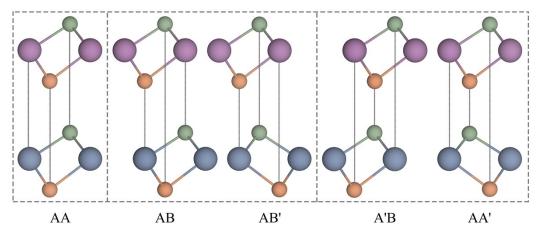
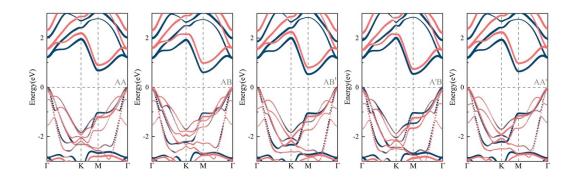



Figure S1. Top and side views of atomic structure for H-ZrSSe and H-HfSSe.

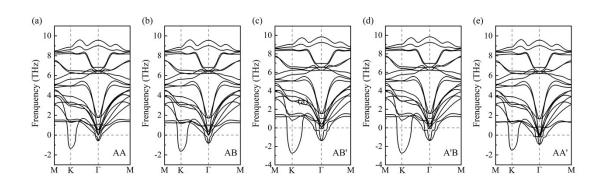






Figure S2. Phonon spectrum of (a) T-ZrSSe, (b) T-HfSSe, (c) H-ZrSSe and (d) H-HfSSe.




**Figure S3.** AIMD simulation results for (a) T-ZrSSe, (b) T-HfSSe, (c) in-plane heterostructure, (d) electronic heterostructure with 1D phase boundary, at 300 K lasting for 3 ps. Insets are snapshots of the final structures.




**Figure S4.** (a) Planner-averaged electrostatic potential energy for (a) T-ZrSSe (left) and T-HfSSe (right). Band structure taking SOC into account for (b) T-ZrSSe, and (c) T-HfSSe monolayer, the Fermi level is set to zero.



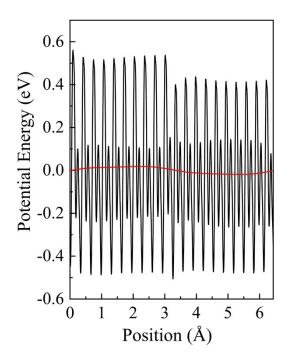
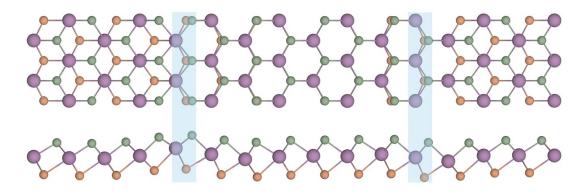
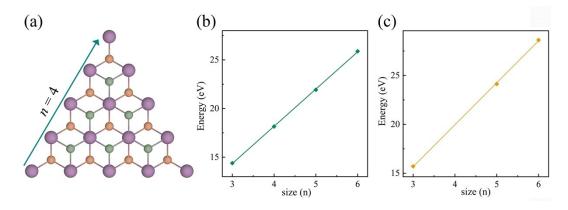
**Figure S5**. Stacking patterns of high-symmetry for out-of-plane vdW heterostructures composed of T-ZrSSe and T-HfSSe.

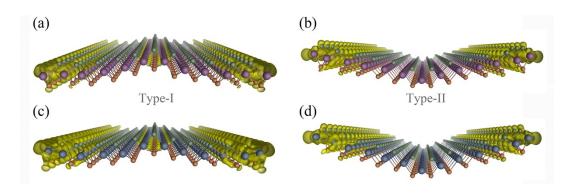


**Figure S6.** Projected band strucure for out-of-plane vdW heterostructure composed of T-ZrSSe and T-HfSSe, contributions from T-ZrSSe and T-HfSSe are distinguished by navy-blue and orange dots, respectively. The Fermi level is set to zero.



**Figure S7.** Phonon spectrum for out-of-plane heterostructures composed of T-ZrSSe and T-HfSSe of different stacking order: (a) AA, (b) AB, (c) AB', (d) A'B, and (e) AA'.



Figure S8. Planar-averaged electrostatic potential along the direction perpendicular to the interface for in-plane heterostructures of T-ZrSSe and T-HfSSe (n = 10), and the macroscopic-average of the electrostatic potential (red line) is also shown.



**Figure S9.** Relaxed structure of the electronic heterostructure between T- and H-ZrSSe with the 1D phase boundary along the zigzag direction.



**Figure S10.** (a) Triangular structure used to calculate the edge energy  $\sigma$  of type-I GBs, where *n* denotes the number of Se atoms on each edge. Energy of the triangular structure of (b) ZrSSe and (c) HfSSe as a function of *n*. In (b) and (c), thus, the slope corresponds to the edge energy  $\sigma$ .



**Figure S11.** Charge density distribution of the states near the Fermi level for GBs of (a) type-I nad (b) type-II in T-ZrSSe, and of (c) type-I and (d) type-II in T-HfSSe.