Electronic Supplementary Information for the "The Jahn-Teller and pseudo-Jahn-Teller effects in propyne radical cation"

Arun Kumar Kanakati, Vadala Jhansi Rani and Susanta Mahapatra* School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

 $^{^{\}ast}$ Corresponding author, E-mail: susanta.mahapatra@uohyd.ac.in

STEPS TO ARRIVE AT EQS. 21-24

The diabatic quadratic $E \otimes e$ -JT electronic Hamiltonian of the degenerate electronic state is given by

$$\Delta \mathcal{H} = \begin{bmatrix} u^x & u^{xy} \\ u^{xy} & u^y \end{bmatrix},\tag{A1a}$$

with

$$u^{x/y} = E^0 + \sum_{i \in a_1} \kappa_i Q_i + \frac{1}{2} \sum_{i \in a_1} \gamma_i Q_i^2 \pm \sum_{i \in e} \lambda_i Q_{ix} + \frac{1}{2} \sum_{i \in e} \gamma_i (Q_{ix}^2 + Q_{iy}^2) \pm \frac{1}{2} \sum_{i \in e} \eta_i (Q_{ix}^2 - Q_{iy}^2),$$
(A1b)

and

$$u^{xy} = \sum_{i \in e} \left[\lambda_i Q_{iy} - 2\eta_i Q_{ix} Q_{iy} \right].$$
 (A1c)

Upon diagonalization of Eq. A1a, the adiabatic potential energy surfaces is obtained

$$\mathcal{V}_{\pm} = \frac{(u^x + u^y)}{2} \pm \left[\left(\frac{u^x - u^y}{2} \right)^2 + (u^{xy})^2 \right]^{1/2}.$$
 (A2a)

Substitution of Eqs. A1b and A1c into Eq. A2a and add addition of the harmonic potential of reference state \mathcal{V}_0 (Eq. 6 of the text) yields

$$\mathcal{V}_{\pm} + \mathcal{V}_{0} = V_{\pm} = E^{0} + \sum_{i\epsilon a_{1}} \kappa_{i}Q_{i} + \frac{1}{2}\sum_{i\epsilon a_{1}} \gamma_{i}Q_{i}^{2} + \frac{1}{2}\sum_{i\epsilon a_{1}} \omega_{i}Q_{i}^{2} + \frac{1}{2}\sum_{i\epsilon e} \gamma_{i}(Q_{ix}^{2} + Q_{iy}^{2}) + \frac{1}{2}\sum_{i\epsilon e} \omega_{i}(Q_{ix}^{2} + Q_{iy}^{2})$$

$$\pm \left[\left(\sum_{i\epsilon e} \lambda_{i}Q_{ix} + \frac{1}{2}\sum_{i\epsilon e} \eta_{i} \left(Q_{ix}^{2} - Q_{iy}^{2}\right) \right)^{2} + \sum_{i\epsilon e} \left(\lambda_{i}Q_{iy} - 2\eta_{i}Q_{ix}Q_{iy}\right)^{2} \right]^{1/2}$$
(A2b)

The minimum of the seam of CIs occurs at the minimum V_+ in the space of symmetric vibrational modes. Upon minimization of V_+ with respect to Q_i one obtains Eq. 23 (see text). Next the location of the minimum and saddle points of the lower adiabatic sheet are obtained by setting the first derivative of V_- with respect to the symmetric modes and degenerate modes to zero separately. Upon substitution of the results into V_- one obtains Eqs. 21 and 22 (see text). Note that absolute value of η_i distinguishes between minimum and saddle point. Finally the JT stabilization energy (Eq. 24) is obtained by subtracting Eq. 21 from Eq. 23.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$\widetilde{X}^2 E$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mode	σ_{i}	σ'_i	δ_i	$\delta_i' \; (\delta_i'')$	$ ho_i$	$ ho_i' \; (ho_i'')$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a_1	0.000000		0.001000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_1 $	0.000898		0.001036			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_2	-0.000691		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_3	0.002899		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_4 $	-0.008080		-0.000832			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_5	-0.001012		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ve	-0.0000007	0.0004	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ν_0 ν_7	-0.000013	0.0060	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ν _ο	-0.000011	0.0057	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vo	0.00000009	0.0014	-0.00053	0.0000004 (0.0000006)	-0.00000003	-0.000953 (-0.001846)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ν_{9} ν_{10}	-0.000008	0.0078	0.00348	0.0000219 (0.0000286)	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 10	0.000000	0.0010	0.00010	(0.0000220)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\widetilde{A}^2 E$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mode	σ_i	σ'_i	δ_i	$\delta'_i (\delta''_i)$	ρ_i	$\rho_i' \left(\rho_i'' \right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ı	U	$\iota \ \iota \ \iota$, ,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a_1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_1 $	0.000670		0.000104			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_2	-		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_3$	-		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_4$	0.018160		0.008480			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_5$	0.002170		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ u_6 $	-0.00220	0.02060	0.00890	0.00011 (0.00011)	0.00150	-0.00360 (-0.00360)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_7	0.00008	0.00942	0.01822	-0.00001 (-0.00001)	-0.00005	-0.00397 (-0.00397)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_8	-0.00024	0.01210	0.00848	-0.00002 (-0.00002)	0.00019	-0.00335(-0.00335)
ν_{10} -0.00001 0.00564 0.00129 0.00004 (0.00004)	$ u_9$	-0.00057	0.05901	-0.01472	0.00022(0.00022)	0.00065	-0.00244 (-0.00244)
	$ u_{10}$	-0.00001	0.00564	0.00129	0.00004 (0.00004)	-	-
$\widetilde{A}^2 E \times \widetilde{B}^2 A_1$ (PJT parameters)			\widetilde{A}^{2}	$^{2}E \times \widetilde{B}^{2}A_{1}$	(PJT parameters)		
Mode $\lambda_{i}^{\prime(3)} = \lambda_{i}^{\prime(4)} = \lambda_{i}^{\prime(4')} = \lambda_{i}^{\prime(5)} = \lambda_{i}^{\prime(5')}$	Mode	$\lambda_{i}^{\prime(3)}$	$\lambda_{i}^{\prime(4)}$	$\lambda_i^{\prime(4')}$	$\lambda'^{(5)}$	$\lambda_{i}^{\prime(5')}$	-
			~1				
e	e						
ν_6 0.0528 -0.0070 -0.0070 -0.0067 -0.0067	Ve	0.0528	-0.0070	-0.0070	-0.0067	-0.0067	
ν_7 0.0767 -0.0108 -0.0108 -0.0094 -0.0094	ν_{7}	0.0767	-0.0108	-0.0108	-0.0094	-0.0094	
ν_8 0.0161 -0.0031 -0.0031 -0.0019 -0.0019	ν_{2}	0.0161	-0.0031	-0.0031	-0.0019	-0.0019	
ν_{9} -0.0017 -0.0007 -0.0007 0.0007 0.0007	ν_{0}	-0.0017	-0.0007	-0.0007	0.0007	0.0007	
ν_{10} 0.0003 0.0001 0.0001	ν_{10}	0.0003	0.0001	0.0001	-	-	

TABLE S1. Higher order coupling parameters of $\widetilde{X}^2 E$, $\widetilde{A}^2 E$ states and PJT coupling between $\widetilde{A}^2 E - \widetilde{B}^2 A_1$ electronic states are derived from EOMIP-CCSD electronic structure data.

	$\widetilde{X}^2 E$							
Mode	σ_i	σ'_i	δ_i	$\delta_i' \; (\delta_i'')$	$ ho_i$	$ ho_i' \left(ho_i'' ight)$		
<i>a</i> .								
u_1	0 000842		0 000785					
ν_1	-0.000850		-					
ν_2	0.00000000000000000000000000000000000		_					
2 S 1/4	-0.008205		-0.001367					
ν4 1/ε	-0.001129		-					
P 0	0.001120							
e								
ν_6	-	-	-	-	-	-		
ν_7	-0.000013	0.0060	-	-	-	-		
ν_8	-0.000010	0.0059	-	-	-	-		
$ u_9$	0.0000014	0.0025	0.000894	-0.000213 (0.000214)	-0.0000001	-0.000553 (-0.001538)		
ν_{10}	-0.0000087	0.0071	0.000498	0.000010 (- 0.000006)	-	-		
				$\widetilde{A}^2 E$				
NT 1.		,	5					
Mode	σ_i	σ_i	o_i	$O_i^{(i)}(O_i^{(i)})$	$ ho_i$	$\rho_i(\rho_i)$		
0								
<i>u</i> ₁	0.0005706							
ν_1	0.0003730		_					
ν_2	_		_					
ν_3	0.0188956		0 0090729					
ν4 1/ε	0.010000000000000000000000000000000000		-					
r 0	0.0021102							
e								
ν_6	0.00073	-0.02796	0.02753	-0.000267 (-0.000267)	-0.00042	0.00310(0.00310)		
ν_7	-0.00002	0.02677	0.02656	0.000001 (0.000001)	0.00001	-0.00601 (-0.00601)		
ν_8	-0.00030	0.02306	0.01037	-0.000020 (-0.000020)	0.00023	-0.00464 (-0.00464)		
ν_9	-0.00048	0.04481	-0.03453	0.000263 (0.000263)	0.00051	0.00126 (0.00126)		
ν_{10}	0.00039	0.00018	0.00406	0.000019 (0.000019)	-	-		
		\widetilde{A}^2	$E imes \widetilde{B}^2 A_1$ (I	PJT parameters)				
Mode	$\lambda^{\prime(3)}$	$\lambda^{\prime(4)}$	$\lambda^{\prime(4')}$	$\lambda^{\prime(5)}$	$\lambda^{\prime(5')}$	-		
Moue	λ_i	Λ_i	Λ_i	λ_i	Λ_i			
e								
ν_{κ}	-0.0256	-0.0075	-0.0075	0.0080	0.0080			
ν_7	0.0866	-0.0134	-0.0134	-0.0099	-0.0099			
ν_8	0.0232	-0.0041	-0.0041	-0.0029	-0.0029			
ν_9	-0.0094	-0.0010	-0.0010	0.0018	0.0018			
ν_{10}	-0.0020	-0.0000	-0.0000	-	-			

TABLE S2. Same as in Table S1 and the parameters are derived from CASSCF-MRCI electronic structure data.

TABLE S3. The number of harmonic oscillator (HO) basis functions along the totally symmetric and degenerate vibrational modes and the dimension of the secular matrix used in the calculation of the stick vibrational spectra of the $\tilde{X}^2 E$, $\tilde{A}^2 E$ and $\tilde{B}^2 A_1$ electronic states of CH₃CCH^{·+} shown in various figures.

Electronic	Vibrational	No. of HO basis	Dimension	Figure(s)
states	modes		of secular matrix	
$\widetilde{X}^2 E$	$egin{array}{ll} u_1, u_2, u_3 \ u_4, u_5, \end{array}$	$(10,12,20) \\ (18,16)$	691200	Figs. 5(b) and (c)
	$\nu_{6x}, \nu_{6y}, \nu_{7x}, \nu_{7x} \\ \nu_{8x}, \nu_{8y}, \nu_{9x}, \nu_{9y} \\ \nu_{10x}, \nu_{10y}$	$(4,4,6,6) \\ (8,8,4,4) \\ (8,8)$	37748736	Fig. 5(b) and (c)
$\widetilde{A}^2 E$	$egin{array}{lll} u_1, u_2, u_3 \ u_4, u_5, \end{array}$	(12,18,14) (20,16)	967680	Figs. $6(c)$ and (d)
	$ \begin{array}{l} \nu_{6x}, \nu_{6y}, \nu_{7x}, \nu_{7x} \\ \nu_{8x}, \nu_{8y}, \nu_{9x}, \nu_{9y} \end{array} $	(6,6,8,8) (8,8,4,4)	2359296	Fig. $6(e)$ and (f)
$\widetilde{B}^2 A_1$	$egin{array}{lll} u_1, u_2, u_3 \ u_4, u_5, \end{array}$	$(14,12,16) \\ (20,18)$	967680	Figs. $5(c)$ and (d)

TABLE S4. Vibrational energy levels (in cm⁻¹) of the $\tilde{X}^2 E$, $\tilde{A}^2 E$ and $\tilde{B}^2 A_1$ electronic states of CH₃CCH^{.+} obtained from the uncoupled state calculations using the EOMIP-CCSD energy data. The assignment of the levels carried out by examining the nodal pattern of the wave functions is included in the table.

		$\widetilde{X}^2 E$					$\widetilde{A}^2 E$		$\widetilde{B}^2 A_1$
Energy	Ref. [43	B] Ref. [52]	Assignment	Energy	Ref.	[43]	Assignment	Energy	Assignment
0			0_{0}^{0}	0			0_{0}^{0}	0	0_{0}^{0}
876	940	$930{\pm}50$	$ u_{50}^{-1}$	1024			$ u_{50}^{-1}$	917	$ u_{50}^{-1}$
1328			$ u_4{}^1_0$	1304	129	0	$ u_4{}^1_0$	1497	$ u_{40}^{1}$
1752			$ u_{50}^2$	2048			$\nu_{50}^{\ 2}$	1835	$ u_{50}^{2}$
2169	1940	2000 ± 50	ν_{30}^{-1}	2145			ν_{30}^{-1}	2018	ν_{30}^{-1}
2204			$\nu_{40}^{1} + \nu_{50}^{1}$	2328			$\nu_{40}^{1} + \nu_{50}^{1}$	2414	$\nu_{40}^{1} + \nu_{50}^{1}$
2628			$ u_{50}^3$	2602			$ u_{40}^2$	2752	$ u_{50}^{3}$
2655			ν_{40}^2	3073			$ u_{50}^3$	2936	$\nu_{30}^{1} + \nu_{50}^{1}$
3046			$\nu_{30}^{1} + \nu_{50}^{1}$	3169			$\nu_{30}^{1} + \nu_{50}^{1}$	2991	$ u_{40}^2$
3067			$ \nu_{20}^{-1} $	3178			$ u_{20}^{-1}$	3017	$ u_{20}^{1} $
3080			$\nu_{40}^{1} + \nu_{50}^{2}$	3353			$ u_{40}^{1} + u_{50}^{2} $	3332	$ u_{40}^1 + \nu_{50}^2 $
3497			$ u_{10}^1 $	3449			$\nu_{30}^{1} + \nu_{40}^{1}$	3334	$ u_{10}^{1} $
3498			$\nu_{30}^{1} + \nu_{40}^{1}$	3495			$ u_{10}^{1} $	3515	$\nu_{30}^{1} + \nu_{40}^{1}$
3504			ν_{40}^{5}	3626			$\nu_{40}^2 + \nu_{50}^1$	3670	ν_{50}^4
3531			$\nu_{40}^2 + \nu_{50}^1$	3895			$ u_{40}^{\ 3}$	3853	$ u_{3_0^1} + u_{5_0^2}$
3922			$ u_{30}^{1} + u_{50}^{2} $	4097			$ u_{50}^4$	3909	${ u_4}_0^2 {+} { u_5}_0^1$
3943			$ u_{20}^{1} + u_{50}^{1}$	4194			$ u_{30}^{1} + u_{50}^{2} $	3935	$\nu_{20}^{1} + \nu_{50}^{1}$
3956			$ u_{40}^1 + u_{50}^3$	4202			$ u_{20}^{1} + u_{50}^{1} $	4036	ν_{30}^{2}
3980			$ u_{40}^3$	4377			$\nu_{40}{}^1\!\!+\!\nu_{50}{}^3$	4252	$ u_{10}^{1} + u_{50}^{1} $
4339			ν_{30}^{2}	4482			$ u_{20}^{1} + u_{40}^{1} $	5036	$ u_{20}^{1} + u_{30}^{1}$
4373			$ u_{10}^{1} + u_{50}^{1} $	4520			$ u_{10}^{1} + \nu_{50}^{1} $	5352	$\nu_{10}^{1} + \nu_{30}^{1}$
4380			$ u_{50}^{5}$	4651			$ u_{40}^{\ 2} \!+\! \nu_{50}^{\ 2}$	6035	$ u_{20}^2$
4395			$ u_{20}^1 + u_{40}^1 $	4747			$ u_{30}^{1} + u_{40}^{2}$		
4407			${\nu_4}_0^2 \!+ {\nu_5}_0^2$	5218			$ u_{30}^{1} + u_{50}^{3}$		
				5227			${\nu_2}_0^1 {+} {\nu_5}_0^2$		
				5323			$ u_{20}^{1} + u_{30}^{1}$		
				5544			$\nu_{10}^{1} + \nu_{50}^{2}$		

$\widetilde{X}^2 E$					$\widetilde{A}^2 E$		$\widetilde{B}^2 A_1$	
Energy	Ref. [43]	Ref. [52]	Assignment	Energy	Ref. $[4]$	43] Assignment	Energy	Assignment
0			00	0		00	0	0_{0}^{0}
876	940	$930{\pm}50$	$ u_{50}^{-1}$	1033		$ u_{50}^{-1}$	914	$ u_{50}^{-1}$
1341			$ u_{40}^{-1}$	1315	1290) ν_{40}^{1}	1495	$ u_{40}^{1}$
1753			$ u_{50}^2$	2067		${ u_{50}}^2$	1828	$ u_{50}^2$
2168	1940	2000 ± 50	$ u_{30}^{1}$	2156		$ u_{30}^1$	1995	$ u_{30}^1$
2218			$ u_{40}^1 + u_{50}^1$	2348		$ u_{40}^1 + u_{50}^1 $	2409	$ u_{40}^1 + u_{50}^1 $
2630			$ u_{50}^{3}$	2622		${ u_4}_0^2$	2742	$ u_{50}^{\ 3}$
2680			$ u_{40}^2$	3100		$ u_{50}^{-3}$	2909	$\nu_{30}^{1} + \nu_{50}^{1}$
3045			$ u_{30}^{1} + u_{50}^{1}$	3183		$ u_{20}^1$	2988	$ u_{40}^2$
3067			$ u_{20}^1$	3189		$ u_{30}^{1} + u_{50}^{1} $	3016	$ u_{20}^{1}$
3095			$\nu_{40}^{1} + \nu_{50}^{2}$	3382		$ u_{40}^{1} + \nu_{50}^{2} $	3279	ν_{10}^{-1}
3504			$ u_{10}^1 $	3471		$\nu_{30}^{1} + \nu_{40}^{1}$	3323	$ u_{40}^{1} + u_{50}^{2} $
3509			$\nu_{30}^{1} + \nu_{40}^{1}$	3499		$ u_{10}^{-1}$	3491	$\nu_{30}^{1} + \nu_{40}^{1}$
3557			${ u_4}_0^2 {+} { u_5}_0^1$	3656		$\nu_{40}^2 + \nu_{50}^1$	3656	$ u_{50}^4$
3922			$ u_{30}^{1} + u_{50}^{2} $	3922		$ u_{40}^3$	3823	$ u_{30}^{1} + u_{50}^{2}$
3944			$\nu_{20}^{1} + \nu_{50}^{1}$	4133		$ u_{50}^4$	3902	$ u_{40}^2 + u_{50}^1 $
3972			$\nu_{40}^{1} + \nu_{50}^{3}$	4216		$ u_{20}^{1} + u_{50}^{1}$	3930	$\nu_{20}^{1} + \nu_{50}^{1}$
4017			$ u_4{}_0^3$	4223		$\nu_{30}^{1} + \nu_{50}^{2}$	3991	ν_{30}^{2}
4337			ν_{30}^{2}	4312		$ u_{30}^2$	4193	$ u_{10}^{1} + u_{50}^{1} $
4381			${\nu_1}_0^2 {+} {\nu_5}_0^1$	4415		$ u_{40}^{\ 1} + u_{50}^{\ 3}$		
4386			$ u_{50}^{5}$	4498		$ u_{20}^{1} + u_{40}^{1} $		
4408			$ u_{20}^{1} + u_{40}^{1}$	4532		$ u_{10}^{1} + u_{50}^{1} $		
				4689		$\nu_{40}^{\ 2} {+} \nu_{50}^{\ 2}$		
				4779		$\nu_{30}{}^1\!\!+\!\!\nu_{40}{}^2$		
				5256		$ u_{30}^1 + u_{50}^3$		
				5339		$ u_{20}^1 + u_{30}^1$		
				5346		$\nu_{30}^2 + \nu_{50}^1$		

TABLE S5. Same as in Table S4 obtained with the set of parameters derived from the CASSCF-MRCI energy data.

TABLE S6. Normal mode combinations, sizes of the primitive and single particle bases used in the MCTDH calculations. ^{*a*} The primitive basis consists of harmonic oscillator DVR functions, in the dimensionless normal coordinate required to represent the system dynamics along the relevant mode. The primitive basis for each particle is the product of the one-dimensional bases; ^{*b*} The SPF basis is the number of the single particle functions used.

Electronic state	Normal modes	Primitive $basis^a$	SPF basis ^{b}		
$\widetilde{X}^2 E$	$ u_1, \nu_{6x}, \nu_{6y}, \nu_2$	(6, 10, 10, 8)	[8,8]		
	$\nu_4, \nu_{7x}, \nu_{7y}, \nu_3$	(16, 14, 14, 14)	[8,8]	Fig.	7(b) and (c)
	$\nu_{8x}, \nu_{8y}, \nu_5$	(16, 16, 10)	[8,8]		
	$\nu_{9x}, \nu_{9y}, \nu_{10x}, \nu_{10y}$	(12, 12, 16, 16)	[10, 10]		
$\widetilde{A}^2 E \& \widetilde{B}^2 A_1$	$ u_1, \nu_{6x}, \nu_{6y}, \nu_2$	(10, 12, 12, 14)	[22, 22, 12]		
	$ u_4, \nu_{7x}, \nu_{7y}, \nu_3 $	(12, 18, 18, 18)	[24, 24, 12]	Fig.	7(b) and (c)
	$\nu_{8x}, \nu_{8y}, \nu_5$	(16, 16, 14)	[22, 22, 12]		
	$\nu_{9x},\nu_{9y},$	(12, 12)	[20, 20, 10]		

FIG. S1. Probability density of vibronic wave functions of the $\tilde{X}^2 E$ electronic state of CH₃CCH⁺ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian parameters are used in the calculations. Panels a-c and d-f represent the fundamentals and first overtone of ν_5 , ν_4 and ν_3 vibrational modes, respectively. Panels g and h represent the second overtone of ν_5 and ν_4 modes. The wave functions in panels i-l represent the combination peaks of ν_5 , ν_4 and ν_3 modes.

FIG. S2. Probability density of vibronic wave functions of the $\tilde{A}^2 E$ electronic state of CH₃CCH⁺ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian parameters are used in the calculations. Panels a-c and d-e represent the fundamentals and first overtone of ν_5 , ν_4 and ν_2 vibrational modes, respectively. Panels f and g represent the second overtone of ν_5 and ν_4 modes. The wave functions in panels h-l represent the combination peaks of ν_5 , ν_4 and ν_2 modes.

FIG. S3. Probability density of vibronic wave functions of the $\tilde{B}^2 A_1$ electronic state of CH₃CCH⁺⁺ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian parameters are used in the calculations. Panels a-c and d-f represent the fundamentals and first overtone of ν_5 , ν_4 and ν_3 vibrational modes, respectively. The wave functions in panels g-i represent the combination peaks of ν_5 , ν_4 and ν_3 modes.