Supplementary materials

Novel insights into lattice thermal transport in nanocrystalline Mg₃Sb₂ from first principles: The crucial role of higher-order phonon scattering

Zheng Chang^{a,‡}, Jiongzhi Zheng^{b, ‡}, Yuhang Jing^e, Weiqi Li^f, Kunpeng Yuan^a, Jing Ma^a, Yufei Gao^a, Xiaoliang Zhang^{a,*}, Ming Hu^{c,*}, Jianqun Yang^{d,*}, Dawei Tang^{a,*}

^aKey Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China. ^bDepartment of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

^cDepartment of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA.

^dSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

eSchool of Astronautics, Harbin Institute of Technology, Harbin 150001, China

^fSchool of Physics, Harbin Institute of Technology, Harbin 150001, China

*Corresponding author. Email: <u>zhangxiaoliang@dlut.edu.cn</u>, <u>hu@sc.edu</u>, <u>yangjianqun@hit.edu.cn</u> and dwtang@dlut.edu.cn

[‡]These authors contributed equally.

Convergence test

Regarding the convergence test of κ at 300 K *versus* different **Q**-points mesh along in- and cross-plane directions depicted in Figure S1, we observe that considering only three phonon scattering requires a 25×25×25 **Q**-point mesh to produce converged values, while the inclusion of three- and four-phonon scatterings only requires a 13×13×13 **Q**-point mesh to converge. Meanwhile, we also perform calculations on the above convergence **Q**-points mesh with scalebroad=1.0. Furthermore, it can be clearly seen that both $\kappa_{xx}(3+4ph)$ and $\kappa_{zz}(3+4ph)$ represent two convergence trends that is similar to $\kappa_{xx}(3ph)$ and $\kappa_{zz}(3ph)$, respectively.

Figure S1. Variation of the computed lattice thermal conductivity (κ) of Mg₃Sb₂ at 300K considering only threephonon scattering (3ph) and both three- and four-phonon scatterings (3+4ph) along in- and cross-plane directions with respect to different **Q**-points mesh.

Figure S2. Phonon model level scattering rate decomposed into Normal- and Umklapp-processes in 3ph- and 4ph-scattering interactions.

Table S1.	Percentage	contribution	of	different	phonon	branches	s to	κ for	occurring	Mg_3Sb_2	at 3	00 K
and 800 K	K, respective	ly.										

Material	к %	300K-3-ph only		300K-	3+4ph	800K-3	ph only	800K-3+4ph		
		XX	ZZ	XX	ZZ	XX	ZZ	XX	ZZ	
	TA1	28.54	15.59	27.54	16.35	28.25	15.52	25.97	16.38	
Mg_3Sb_2	TA2	25.88	38.96	26.87	36.07	25.65	38.76	26.97	36.44	
	LA 22.65 35.	35.11	21.11	36.96	22.52	35.01	20.49	35.68		
	Optical	22.93	10.34	24.48	10.62	23.58	10.71	26.57	11.50	