Reaction Mechanism Conversion Induced by Contest of Nucleophile and

Leaving Group

Siwei Zhao,^a Gang Fu,^a Wenqing Zhen,^a Li Yang,^{a,b,*} Jianmin Sun,^{a,c,*} and Jiaxu

Zhang^{a,b,*}

^a MIIT Key Laboratory of Critical Materials Technology for New Energy

Conversion and Storage, School of Chemistry and Chemical Engineering,

^b State Key Lab of Advanced Welding and Joining,

^c State Key Lab of Urban Water Resource and Environment,

Harbin Institute of Technology,

Harbin 150001, P. R. China

Author E-mail Address: yangli2014@hit.edu.cn, sunjm@hit.edu.cn, and

zhjx@hit.edu.cn

	MP2	B3LYP	M06	B97-1	BhandH	CCSD(T)-F12b ^a	Expt ^b
	OH-						
R_{O-H1}	0.973	0.970	0.963	0.969	0.958		
	CH ₃ Cl						
R _{C-Cl}	1.797	1.810	1.794	1.809	1.767		1.785
R_{C-H2}	1.096	1.094	1.094	1.095	1.090		1.090
$ heta_{ ext{H2-C-H3}}$	110.7	110.9	110.6	111.0	110.4		110.8
$[HOH \cdot CH_2Cl]^-(TS0)$							
R _{C-Cl}	1.806	1.827	1.821	1.825	1.779	1.786	
R_{C-H2}	2.012	1.994	2.038	1.988	1.933	2.047	
$ heta_{ ext{C-H2-O}}$	167.0	173.5	164.5	171.2	163.3	163.7	
	$OH^-\cdots HCH_2Cl$ (im1)						
R_{C-H2}	1.124	1.141	1.149	1.152	1.161	1.126	
R _{C-Cl}	1.830	1.857	1.843	1.854	1.806	1.974	
R_{O-H2}	1.769	1.713	1.683	1.679	1.573	1.717	
R_{O-H1}	0.970	0.967	0.961	0.966	0.956	0.962	
R_{C-H3}	1.098	1.096	1.098	1.099	1.094	1.087	
$ heta_{ ext{H2-C-Cl}}$	110.5	111.6	111.6	111.3	110.4	109.6	
$ heta_{ ext{C-H2-O}}$	158.7	162.6	164.8	165.0	170.2	164.4	
$ heta_{ ext{H1-O-H2}}$	136.6	117.4	115.7	114.3	117.2	122.7	
	$[OH \cdot HCH_2 \cdot C1]^-$ (TS1)						
R_{C-H2}	1.094	1.094	1.100	1.096	1.090	1.084	
R _{C-Cl}	1.840	1.883	1.865	1.878	1.816	1.824	
R_{C-H3}	1.093	1.091	1.093	1.093	1.087	1.082	
R_{O-H2}	2.074	2.055	1.975	2.050	1.996	2.056	
R_{O-H1}	0.971	0.968	0.961	0.967	0.956	0.963	
$ heta_{ ext{H2-C-Cl}}$	110.5	111.2	112.9	111.5	111.4	110.9	
$ heta_{ ext{C-H2-O}}$	112.4	115.1	118.0	115.4	107.6	112.8	

Table S1. Geometries of the $OH^- + CH_3Cl$ stationary points.

				OH⁻···C	H ₃ Cl (im1	')
R_{C-O}	2.614				2.489	2.600
R _{C-Cl}	1.850				1.827	1.834
R_{O-H1}	0.971				0.956	0.963
R_{C-H2}	1.091				1.085	1.081
$ heta_{ ext{O-C-Cl}}$	169.3				168.6	168.6
$ heta_{ ext{C-O-H1}}$	158.5				152.5	154.6
			[OH··CH ₃	g···Cl]⁻ (TS	1')
R _{C-O}	2.237				2.212	2.227
R_{O-H1}	0.972				0.957	0.964
R_{C-H3}	1.084				1.079	1.072
R _{C-Cl}	2.056				1.998	2.053
$\theta_{ ext{C-O-H1}}$	110.1				112.8	107.8
$ heta_{ ext{H2-C-O}}$	76.6				75.2	77.1
$\theta_{\text{H2-C-Cl}}$	99.7				101.4	99.8
		CH ₃ OH…Cl⁻(im2)				
R_{C-O}	1.420	1.409	1.394	1.407	1.379	1.405
R_{C-H2}	1.103	1.103	1.103	1.104	1.099	1.094
R_{O-H1}	0.993	0.995	0.990	0.994	0.987	0.985
$R_{\rm H1-C1}$	2.104	2.101	2.121	2.095	2.011	2.097
$ heta_{ ext{C-O-H1}}$	104.9	107.1	106.0	106.5	106.4	105.4
$ heta_{ ext{O-H1-Cl}}$	166.8	171.5	165.1	170.5	166.2	166.8
$ heta_{ ext{H3-C-O}}$	112.0	112.3	112.6	112.3	112.3	112.0
	$[OH \cdot H \cdot CH_2Cl]^-$ (TS2)					
R_{O-H1}	0.968	0.966	0.961	0.965	0.956	
R_{O-H2}	1.152	1.203	1.303	1.219	1.218	
R_{C-H2}	1.507	1.440	1.326	1.417	1.383	
R _{C-Cl}	1.885	1.910	1.876	1.899	1.838	
$\theta_{\text{O-H2-C}}$	179.3	176.8	178.6	177.2	179.4	

$ heta_{ ext{H2-C-Cl}}$	107.8	111.1	108.9	110.6	108.9		
	$HOH\cdots CH_2Cl^-$ (im3)						
R_{O-H1}	0.967	0.964	0.960	0.964	0.955		
R_{O-H2}	1.064	1.058	1.020	1.058	1.047		
R_{C-H2}	1.691	1.718	1.837	1.707	1.675		
R _{C-Cl}	1.904	1.946	1.939	1.934	1.869		
$ heta_{ ext{O-H2-C}}$	174.9	178.1	168.3	177.2	171.8		
$\theta_{\text{H2-C-Cl}}$	104.1	108.9	98.6	107.8	102.0		
	$[OH \cdots CH_3 \cdots C1]^-$ (TS3)						
R _{C-Cl}	2.215	2.341	2.294	2.309	2.186	2.263	
R_{C-O}	2.048	2.170	2.110	2.136	1.984	2.080	
R_{O-H1}	0.976	0.972	0.966	0.971	0.961	0.968	
$\theta_{ ext{O-C-Cl}}$	80.7	81.5	80.8	81.2	80.7	80.7	
$ heta_{ ext{H1-O-C}}$	92.8	93.1	94.5	93.3	96.4	92.4	
	CH ₃ OH						
R_{C-O}	1.435	1.427	1.410	1.424	1.394		1.425
R_{C-H2}	1.103	1.097	1.097	1.098	1.093		1.094
R_{O-H1}	0.966	0.964	0.961	0.963	0.954		0.945
$\theta_{ ext{C-O-H1}}$	107.9	108.9	109.1	108.5	109.8		108.5
$ heta_{ ext{H2-C-H3}}$	108.7	108.5	108.0	108.4	108.0		108.6
	H ₂ O						
R_{O-H2}	0.966	0.965	0.961	0.964	0.955		0.958
$ heta_{ ext{H1-O-H2}}$	103.9	104.7	104.7	104.4	105.6		104.5
	CH_2Cl^-						
R_{C-H3}	1.119	1.117	1.118	1.120	1.108		
R _{C-Cl}	1.936	1.993	1.974	1.977	1.898		
$ heta_{ ext{H3-C-Cl}}$	99.4	97.9	97.9	98.0	99.9		

^aThe geometries of the stationary points at CCSD(T)-F12b/aug-cc-pVTZ level in ref 31; ^bThe experimental geometries for reactants and products in ref 42; Bond lengths are

in angstroms (Å), and angles are in degree.

Figure S1. Structures of OH⁻···CH₃Cl (im1') and [OH··CH₃··Cl]⁻ (TS1') for the OH⁻

+ CH₃Cl reaction at MP2/aug-cc-pVDZ level.

 f_{rot}' fint' fvib' frel' $OH^- + CH_3Cl \rightarrow CH_3OH + Cl^-$ Direct rebound 0.03 ± 0.01 0.62 ± 0.02 0.65 ± 0.02 0.35 ± 0.02 Direct stripping 0.04 ± 0.01 0.69 ± 0.04 0.73 ± 0.04 0.27 ± 0.04 Indirect 0.08 ± 0.01 0.78 ± 0.01 0.87 ± 0.01 0.13 ± 0.01 Total 0.07 ± 0.01 0.74 ± 0.01 0.81 ± 0.01 0.19 ± 0.01 $^{a}OH^{-} + CH_{3}I \rightarrow CH_{3}OH + I^{-}$ Direct rebound 0.16 ± 0.01 0.63 ± 0.01 0.79 ± 0.01 0.21 ± 0.01 Direct stripping 0.07 ± 0.01 0.66 ± 0.01 0.73 ± 0.01 0.27 ± 0.01 Indirect 0.09 ± 0.01 0.77 ± 0.01 0.86 ± 0.01 0.14 ± 0.01 Total 0.10 ± 0.01 0.80 ± 0.01 0.20 ± 0.01 0.70 ± 0.01

Table S2. Average Fractions of $OH^- + CH_3Y \rightarrow CH_3OH + Y^-$ Product Energy Partitioning.

^a the fractions of the product energy partitioning for the $OH^- + CH_3I$ reaction in ref 9;

	systems			
reaction probability	$OH^- + CH_3Cl$	$OH^- + CH_3I^a$		
total reaction	0.35 ± 0.03	0.42 ± 0.03		
$CH_3OH + Y^-$	0.35 ± 0.03	0.23 ± 0.02		
$CH_2Y^- + H_2O$	_	0.18 ± 0.02		
$[CH_3YOH]^-$	_	0.01 ± 0.01		
rate constant ^{b, c}	$(1.3-1.6) \times 10^{-9}$	1.7×10^{-9}		

Table S3. The reaction probabilities and rate constant for the $OH^- + CH_3Y$ (Y = Cl, I) Reaction Pathways.

^a The reaction probability for the OH⁻ + CH₃I reaction at the B97-1/ECP/d level of theory at $E_{coll} = 0.04$ eV reported in ref 10. ^{b, c} The experimental rate constant (cm³·mol⁻¹·s⁻¹) for the OH⁻ + CH₃Cl and OH⁻ + CH₃I reactions reported in ref 20, 22, 25 and 10, respectively.

Figure S2. (a) the product relative translational energy distributions for the OH⁻ + CH₃Cl reaction at the B3LYP/aug-cc-pVDZ level of theory at $E_{coll} = 0.04$ eV. Results are presented for the direct rebound (red), the direct stripping (purple), and the indirect (green) atomic-level mechanisms, as well as for the total reaction (blue); (b) the product relative translational energy distributions for the OH⁻ + CH₃I reaction at the B97-1/ECP/d level of theory at $E_{coll} = 0.05$ eV reported in ref 9.

Figure S3. Histogram of the velocity scattering angle distribution for the $OH^- + CH_3Cl$ reaction at the B3LYP/aug-cc-pVDZ level of theory. Results are presented for the direct rebound (red), the direct stripping (purple), and the indirect (green) atomic-level mechanisms, as well as for the total scattering (blue).

Supplementary movies:

Representative trajectories of (1) DR mechanism, (2) DS mechanism, (3) Ind-pre mechanism, (4) Ind-pre+PE mechanism, (5) Ind-pre+PE+BR mechanism, as well as (6) Ind-pre+post mechanism, and (7) Ind-pre+post+PE mechanism at $E_{coll} = 0.89$ kcal mol⁻¹ for the OH⁻ + CH₃Cl reaction.