Evolution of microstructures and hydrogen bond interactions within choline amino acid ionic liquid and water mixtures

Jin Chen^a, Xixi Zeng^a, Ling Chen^a

^a Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong

Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science

and Engineering, South China University of Technology, Guangzhou 510640, China

Electronic Supplementary Information

1. Effect of temperature on the viscosity of [Cho][AA]-water mixtures with different ratios

The viscosity changes of [Cho][AA]-water mixtures with increased temperature are shown in Fig.S1. It can be seen that the viscosity values of all [Cho][AA]-water mixtures decreased with the increase of temperature. The motion capacities of cations and anions were continuously enhanced by heat energy. As results, intermolecular interactions between [Cho][AA] ions were weakened by heating, and the viscosity values decreased.

Fig.S1 The effect of temperature on the viscosity of [Cho][AA]-water mixtures with different ratios.

2. The spectral assignments of vibration modes of [Cho][AA] ionic liquid (IL)

A pre-request to analyse the vibration frequency shifts of functional groups (-COO⁻, -NH₂ and -COOH) is the correct assignment of vibration modes of [Cho][AA] IL. Here, [Cho][AA] dimer that resembles the real three-dimensional network structure of IL was chosen to make a correct assignment. By calculating the harmony frequency (Table S1-S2), the vibration modes were associated with -NH₂, -OH, -CH₃, -CH₂, -N-(CH₃)₃, -COOH and -COO⁻ groups of [Cho][AA] IL in ATR-FTIR spectra (Fig.S2). It can be seen from Fig.S2 that asymmetric (3351 cm⁻¹, v_{as}NH₂) and symmetric (3277 cm⁻¹, v_sNH₂) stretching vibration peaks of -NH₂ group only appeared in neat [Cho][Lys] because of the extra residue -NH₂ group of Lys⁻. Yet, the asymmetric vibration peak of -COOH group couldn't be told from the ATR-FTIR spectrum of [Cho][Asp].

Assignments	ATR-FTIR spectrum (cm ⁻¹)	DFT calculations (cm ⁻¹)/Intensity
$v_{as}\alpha$ -N2H ₂	2251.02	3389.30 (5); 3383.02 (13)
$v_{as}R$ -N3H ₂	5551.02	3400.83 (19); 3361.28 (14)
$v_s \alpha$ -N2H ₂	2277 16	3318.90 (1); 3307.64 (16)
$v_{s}R$ -N3H ₂	5277.40	3267.72 (94); 3219.30 (117)
v _s Cho-OH	3024.47	3508.90 (387); 2833.95 (795)
$\nu_{as}CH_3$	2925.79	3014.42 (24); 2996.53 (32)
		2935.79 (49); 2933.60 (37);
	2951.00	2927.07 (34); 2917.99 (48);
$V_{as}CH_2+V_sCH_3$	2851.00	2915.02 (39); 2914.78 (37);
		2909.21 (33); 2903.92 (87)
v _{as} COO ⁻	1567.49	1608.85 (633); 1584.82 (401)
S CH	1470 57	1456.25 (39); 1447.94 (33);
o _{as} CH ₃	1479.57	1439.09 (33); 1437.64 (43)
v _s COO ⁻	1389.21	1380.35 (59); 1345.50 (68)
$\delta_{as} CH_2\text{-}OH$	1083.40	1122.57 (26); 1078.84 (91)
vN-(CH ₃) ₃	955.15	946.81 (30); 942.44 (31)
τNH ₂	862.02	919.74 (178); 916.74 (88); 896.42
	803.92	(60); 869.20 (69)

Table S1 The assignments of vibration modes of [Cho][Lys] dimer.

 v_{as} : asymmetrical stretching vibration; v_s : symmetrical stretching vibration; δ_{as} : asymmetrical deformation vibration; τ : twisting vibration

Table S2 The assignments of vibration modes of [Cho][Asp] dimer.

Assignments	ATR-FTIR spectrum (cm ⁻¹)	DFT calculations (cm ⁻¹)/Intensity
$v_{as}\alpha$ -N2H ₂		3401.87 (14); 3390.69 (7)
$\nu_s \alpha$ -N2H ₂		3327.01 (6); 3313.77 (4)
v _s Cho-OH	3027.92	3686.98 (68); 3190.00 (849)
$v_{as}CH_3$	2955.75	3071.35 (65); 3059.63 (21)
	2850.70	2919.54 (28); 2907.97 (23);
VasCH2+VsCH3	2830.79	2896.34 (40); 2870.10 (123)
ν_{as} R-COOH		1684.70 (399); 1647.80 (99)
$v_{as}COO^{-}$	1578.93	1599.76 (629); 1581.12 (973)
S CU	1476 (4	1453.13 (31); 1447.49 (32);
o _{as} CH ₃	14/0.04	1436.15 (48)
v _s COO ⁻	1374.96	1374.07 (135); 1371.65 (183)
$v_s R$ -COOH	1348.00	1331.23 (64); 1309.07 (646)
$\delta_{as} CH_2\text{-}OH$	1073.39	1123.46 (21); 1070.52 (67)
vN-(CH ₃) ₃	955.12	959.31 (29); 942.58 (36)
τNH_2	855.31	882.02 (129); 863.51 (107)

 v_{as} : asymmetrical stretching vibration; v_s : symmetrical stretching vibration; δ_{as} : asymmetrical deformation vibration; τ : twisting vibration

Fig.S2 The spectral assignments of [Cho][Lys] and [Cho][Asp] IL. These assignments were based on the above theoretical frequency calculations of [Cho][AA] dimer.

3. Atoms in molecules (AIM) analysis of [Cho][AA]- nH_2O (n=1, 2) complexes

The AIM analysis¹ was used to further identify the nature and strength of hydrogen bond (HB) interactions of tight [Cho][AA] ion pairs with one water molecule and water-separated [Cho][AA] ion pairs in Fig.7 by using Multiwfn 3.8 software.² And their bond critical point (BCP) properties of HB interacitons are reported in Table S3-S4.

Table S3 Properties of BCP (a.u.) for the interactions of tight [Cho][Lys] ion pairs with one water molecule (G1, G2, G3, G4), water-separated [Cho][Lys] ion pairs (G5, G6) in Fig.7, and the number (N_{HB}), length (L_{HB}, Å) and bond angle (deg) of HBs.

	N_{HB}	Range L _{HB}	Bond angle	Total ρ_{BCP}	Range ρ_{BCP}	Range $\nabla^2 \rho$	Range G(r)	Range V(r)	Range H(r)
G1									
Cho++H ₂ O									
O _{H2O} -H(CH _{Cho})	2	2.53~2.58	104.05~107.64	0.019	0.009~0.010	0.038~0.038	0.008	-0.007~-0.006	0.001~0.002
Lys ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	1	1.76	165.02	0.036	0.036	0.134	0.034	-0.034	0.000
Cho++Lys-									
O _{COO} -H(O1H _{Cho})	1	1.77	165.78	0.035	0.035	0.130	0.032	-0.032	0.000
O _{COO} -H(CH _{Cho})	3	2.22~2.46	140.66~149.91	0.040	0.011~0.016	0.036~0.057	0.008~0.012	-0.012~-0.007	0.001~0.002
$N2_{Lys}$ -H(CH _{Cho})	2	2.70~2.87	112.54~127.87	0.015	0.007~0.008	0.020~0.024	0.004~0.005	-0.005~-0.004	0.001
Intramolecular HBs									

O1 _{Cho} -H(CH _{Cho})	1	2.36	107.56	0.015	0.015	0.055	0.012	-0.011	0.006
$N3_{Lys}$ -H(CH _{Lys})	1	2.79	117.00	0.008	0.008	0.026	0.006	-0.005	0.001
G2									
Cho ⁺ +H ₂ O									
O1 _{Cho} -H(O _{H2O} H)	1	1.80	148.55	0.033	0.033	0.133	0.032	-0.031	0.001
O _{H2O} -H(CH _{Cho})	2	2.32~2.36	151.20~154.29	0.023	0.011~0.012	0.039~0.044	0.008~0.009	-0.008~-0.007	0.001~0.002
Cho++Lys-									
$N3_{Lys}$ -H(CH _{Cho})	1	2.70	125.93	0.008	0.008	0.023	0.005	-0.004	0.001
O _{COO} -H(O1H _{Cho})	1	1.59	168.05	0.058	0.058	0.153	0.050	-0.062	-0.012
O _{COO} -H(CH _{Cho})	3	2.13~2.31	141.54~147.12	0.051	0.013~0.020	0.045~0.068	0.010~0.015	-0.013~-0.008	0.002
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.43	106.72	0.014	0.014	0.048	0.011	-0.010	0.001
G3									
Lys ⁻⁺ H ₂ O									
N2 _{Lys} -H(O _{H2O} H)	1	1.91	158.16	0.033	0.033	0.098	0.025	-0.026	-0.001
O _{H2O} -H(CH _{Lys})	2	2.45~2.66	128.11~157.58	0.016	0.007~0.009	0.021~0.038	0.005~0.008	-0.006~-0.004	0.001~0.002
Cho++Lys-									

O_{COO} -H(O1H _{Cho})	1	1.66	168.66	0.050	0.050	0.146	0.043	-0.050	-0.007
O _{COO} -H(CH _{Cho})	3	2.12~2.21	139.76~143.65	0.054	0.017~0.020	0.060~0.071	0.013~0.016	-0.014~-0.012	0.002
Intramolecular HBs									
O _{COO} -H(CH)	1	2.49	126.98	0.012	0.012	0.037	0.008	-0.007	0.001
O1 _{Cho} -H(CH _{Cho})	1	2.34	107.42	0.016	0.016	0.059	0.013	-0.011	0.002
O _{COO} -H(N3H _{Lys})	1	2.16	174.11	0.017	0.017	0.060	0.013	-0.012	0.002
G4									
Cho ⁺ +H ₂ O									
O _{H2O} -H(CH _{Cho})	3	2.29~2.35	143.87~146.56	0.038	0.012~0.013	0.041~0.047	0.009~0.010	-0.009~-0.008	0.001~0.002
Lys ⁻ +H ₂ O									
O _{H2O} -H(N3H _{Lys})	1	1.75	167.92	0.048	0.048	0.103	0.035	-0.043	-0.009
Cho++Lys-									
N3 _{Lys} -H(CH _{Cho})	1	2.81	115.04	0.006	0.006	0.0219	0.0047	-0.0039	0.001
O _{COO} -H(O1H _{Cho})	1	1.65	167.46	0.050	0.050	0.150	0.044	-0.050	-0.006
O _{COO} -H(CH _{Cho})	3	2.10~2.49	141.44~150.86	0.044	0.011~0.019	0.031~0.074	0.007~0.016	-0.013~-0.007	0.001~0.003
Intramolecular HBs									
O _{COO} -H(N3H _{Lys})	1	2.03	171.09	0.021	0.021	0.078	0.017	-0.015	0.002

$O_{\text{COO}}\text{-}H(\text{N2H}_{\text{Lys}})$	1	2.20	112.16	0.020	0.020	0.087	0.019	-0.016	0.003
G5									
Cho++H ₂ O									
O _{H2O} -H(O1H _{Lys})	1	1.71	163.36	0.043	0.043	0.146	0.039	-0.042	-0.003
O _{H2O} -H(CH _{Lys})	1	2.63	112.78	0.008	0.008	0.030	0.006	-0.005	0.001
Lys ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	1	1.57	178.66	0.061	0.061	0.159	0.053	-0.066	-0.013
Cho++Lys-									
O _{COO} -H(CH _{Lys})	4	2.06~2.38	133.34~168.92	0.066	0.013~0.020	0.042~0.082	0.009~0.018	-0.015~-0.008	0.001~0.003
Intramolecular HBs									
O1 _{Lys} -H(CH _{Lys})	2	2.32~2.38	121.01~124.01	0.028	0.013~0.015	0.047~0.051	0.010~0.011	-0.010	0.001~0.002
G6									
Cho ⁺ +H ₂ O									
O _{H2O} -H(O1H _{Cho})	1	1.74	159.98	0.040	0.040	0.137	0.036	-0.038	-0.002
O _{H2O} -H(CH _{Cho})	3	2.36~2.46	147.85~171.32	0.030	0.010	0.031~0.040	0.007~0.008	-0.007~-0.006	0.001~0.002
Lys ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	2	1.61~1.76	167.08~173.88	0.047	0.038~0.056	0.130~0.153	0.034~0.048	-0.058~-0.035	-0.001

Cho++Lys-									
O _{COO} -H(CH _{Cho})	3	2.46~2.61	110.35~119.42	0.031	0.009~0.011	0.030~0.041	0.007~0.009	-0.008~-0.006	0.001
$N3_{Lys}$ -H(CH _{Cho})	1	2.28	177.41	0.016	0.016	0.050	0.011	-0.009	0.002
Intramolecular HBs									
O _{COO} -H(CH _{Lys})	1	2.64	141.60	0.008	0.008	0.026	0.006	-0.005	0.001
O1 _{Cho} -H(CH _{Cho})	1	2.49	106.93	0.012	0.012	0.044	0.010	-0.008	0.001

Table S4 Properties of BCP (a.u.) for the interactions of tight [Cho][Asp] ion pairs with one water molecule (H1, H2, H3, H4) and water-separated [Cho][Asp] ion pairs (H5, H6) in Fig.7, and the number (N_{HB}), length (L_{HB}, Å) and bond angle (deg) of HBs.

	N _{HB}	Range L_{HB}	Bond angle	Total ρ_{BCP}	Range ρ_{BCP}	Range $\nabla^2 \rho$	Range G(r)	Range V(r)	Range H(r)
H1									
Cho ⁺ +H ₂ O									
O _{H2O} -H(CH _{Cho})	2	2.48~2.86	110.08~123.66	0.016	0.006~0.010	0.021~0.037	0.004~0.008	-0.007~-0.004	0.001
Asp ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	1	1.81	164.72	0.030	0.030	0.123	0.029	-0.027	0.002
Cho ⁺ +Asp ⁻									
O _{COO} -H(O1H _{Cho})	1	1.82	151.04	0.033	0.033	0.124	0.031	-0.030	0.000

O _{COO} -H(CH _{Cho})	3	2.14~2.35	163.48~175.08	0.046	0.014~0.018	0.047~0.063	0.010~0.014	-0.009~-0.012	0.001~0.002
N2 _{Asp} -H(CH _{Cho})	1	2.79	121.73	0.007	0.007	0.022	0.005	-0.004	0.001
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.50	100.23	0.013	0.013	0.049	0.011	-0.009	0.001
O5 _{Asp} -H(N2H _{Asp})	1	2.35	122.74	0.013	0.013	0.046	0.010	-0.009	0.001
H2									
Cho++H ₂ O									
O1 _{Cho} -H(O _{H2O} H)	1	1.78	158.38	0.036	0.0361	0.133	0.033	-0.033	-0.000
O _{H2O} -H(CH _{Cho})	2	2.28~2.31	130.78~143.01	0.026	0.013	0.048~0.048	0.010	-0.008	0.002
Cho ⁺ +Asp ⁻									
O _{COO} -H(O1H _{Cho})	1	1.55	170.21	0.067	0.067	0.149	0.055	-0.073	-0.018
O _{COO} -H(CH _{Cho})	3	2.05~2.20	146.16~175.21	0.056	0.018~0.021	0.058~0.078	0.013~0.017	-0.014~-0.011	0.002~0.003
O5 _{Asp} -H(CH _{Cho})	1	2.70	112.43	0.006	0.006	0.024	0.005	-0.004	0.001
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.49	104.89	0.017	0.017	0.046	0.010	-0.009	0.001
O5 _{Asp} -H(N2H _{Asp})	1	2.46	118.45	0.011	0.011	0.039	0.009	-0.008	0.001
Н3									

N2 _{Asp} -H(O _{H2O} H)	1	1.85	172.35	0.038	0.038	0.098	0.027	-0.031	-0.003
Cho ⁺ +H ₂ O									
O _{H2O} -H(CH _{Cho})	1	2.46	108.87	0.011	0.011	0.042	0.009	-0.008	0.002
Cho++Asp-									
O _{COO} -H(O1H _{Cho})	1	1.73	165.65	0.036	0.036	0.139	0.036	-0.038	-0.002
O _{COO} -H(CH _{Cho})	3	2.05~2.28	146.06~161.31	0.051	0.014~0.022	0.048~0.080	0.011~0.018	-0.016~-0.009	0.002
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.39	104.75	0.015	0.015	0.055	0.012	-0.011	0.002
O5 _{Asp} -H(N2H _{Asp})	1	2.29	124.01	0.014	0.014	0.052	0.011	-0.010	0.002
H4									
Asp ⁻ +H ₂ O									
O _{H2O} -H(O4H _{Asp})	1	1.82	155.50	0.031	0.031	0.119	0.029	-0.028	0.001
O5 _{Asp} -H(O _{H2O} H)	1	1.96	135.74	0.025	0.025	0.096	0.022	-0.020	0.002
Cho++Asp-									
O _{COO} -H(O1H _{Cho})	1	1.69	167.33	0.043	0.043	0.147	0.040	-0.043	-0.003
O _{COO} -H(CH _{Cho})	4	2.16~2.41	125.37~145.93	0.065	0.012~0.019	0.044~0.064	0.010~0.014	-0.013~-0.008	0.001~0.002

Asp⁻+H₂O

Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.26	114.75	0.018	0.018	0.064	0.014	-0.012	0.002
O5 _{Asp} -H(N2H _{Asp})	1	2.39	120.52	0.012	0.012	0.044	0.010	-0.009	0.001
Н5									
Cho++H ₂ O									
O _{H2O} -H(O1H _{Cho})	1	1.71	162.85	0.042	0.042	0.148	0.039	-0.042	-0.003
O _{H2O} -H(CH _{Cho})	1	2.64	112.77	0.008	0.008	0.029	0.006	-0.005	0.001
Asp ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	1	1.58	177.56	0.059	0.059	0.159	0.052	-0.064	-0.012
Cho ⁺ +Asp ⁻									
O _{COO} -H(CH _{Cho})	41	2.05~2.35	133.00~169.36	0.064	0.014~0.020	0.044~0.084	0.010~0.018	-0.015~-0.009	0.001~0.003
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	2	2.33~2.38	121.10~123.97	0.027	0.013~0.014	0.048~0.050	0.010~0.011	-0.010~-0.009	0.001~0.002
O5 _{Asp} -H(N2H _{Asp})	88	2.40	120.88	0.012	0.012	0.043	0.009	-0.008	0.001
H6									
Cho++H ₂ O									
O _{H2O} -H(O1H _{Cho})	1	1.79	157.05	0.037	0.037	0.126	0.033	-0.033	-0.001

O _{H2O} -H(CH _{Cho})	3	2.40~2.66	113.57~121.25	0.029	0.008~0.011	0.026~0.047	0.006~0.010	-0.008~-0.005	0.001~0.002
Asp ⁻ +H ₂ O									
O _{COO} -H(O _{H2O} H)	2	1.69~1.82	164.98~172.19	0.076	0.032~0.044	0.120~0.142	0.029~0.039	-0.043~-0.028	- 0.004~0.001
Cho ⁺ +Asp ⁻									
O _{COO} -H(CH _{Cho})	4	2.15~2.55	136.10~162.97	0.049	0.009~0.017	0.029~0.062	0.007~0.013	-0.011~-0.006	0.001~0.002
O5 _{Asp} -H(CH _{Cho})	2	2.61~2.64	103.56~109.47	0.017	0.008~0.009	0.028~0.036	0.006~0.008	-0.006~-0.005	0.001
Intramolecular HBs									
O1 _{Cho} -H(CH _{Cho})	1	2.27	122.33	0.017	0.017	0.057	0.013	-0.011	0.002
O5 _{Asp} -H(N2H _{Asp})	1	2.36	122.43	0.013	0.013	0.045	0.010	-0.009	0.001

4. The effect of mixture ratio on the vibration modes of -NH₂ group in [Cho][AA]-water mixtures

Fig.S3 shows the ATR-FTIR spectra (a) and second derivative spectra (b) of [Cho][AA]-water mixtures within the range of 3800~2750 cm⁻¹. For -NH₂ group, when water was added to [Cho][Lys], both asymmetric ($v_{as}NH_2$) and symmetric (v_sNH_2) stretching vibrations of -NH₂ group moved to high wavenumbers, showing a blue shift phenomenon. Yet, these $v_{as}NH_2$ and v_sNH_2 disappeared and were masked at high water amount (w:IL \geq 7:3).

Fig.S3 The ATR-FTIR spectra (a) and second derivative spectra (b) of [Cho][AA]-water mixtures within the range of 3800-2750 cm⁻¹.

References

- 1. R. F. W. Bader and C. F. Matta, Foundations of Chemistry, 2013, 15, 253-276.
- 2. T. Lu and F. Chen, *Journal of Computational Chemistry*, 2012, **33**, 580-592.