Supporting Information for

Controllable Schottky Barriers and Contact Types of BN Intercalation Layer in Graphene/MoSi₂As₄ vdW Heterostructures via Applying External Electrical Field

Yuan Guo,^a Yujing Dong,^a Xiaolin Cai,^c Liangliang Liu, ^{a,d} and Yu Jia^{*a,b,d}

^a Key Laboratory for Special Functional Materials of Ministry of Education, and School

of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China

^b International Laboratory for Quantum Functional Materials of Henan, and School

of Physics, Zhengzhou University, Zhengzhou 450001, Henan, China

^c School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

^d Joint Center for Theoretical Physics, Henan University, Kaifeng 475004, Henan, China

Corresponding Authors:

*E-mail: jiayu@henu.edu.cn

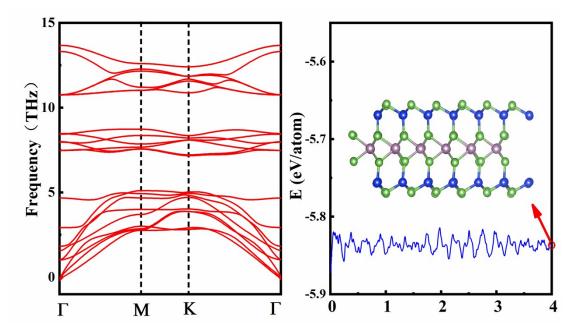


Fig S1. The calculated phonon dispersion curves (left) and ab initio molecular dynamics (AIMD) simulations (right) of MoSi₂As₄ monolayer.

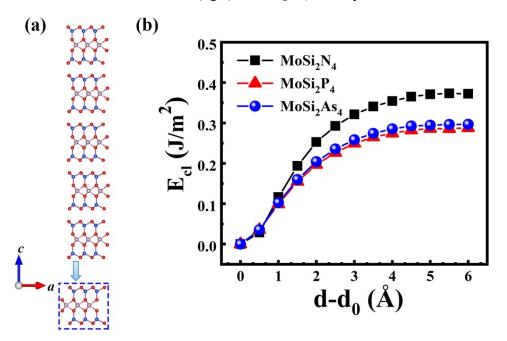


Fig S2. (a)The exfoliation of a layer from the surface of a bulk material. (b) Monolayer exfoliation energies for MoSi₂Z₄ (Z=N, P, As), where the black, red and blue dots-lines represent for MoSi₂N₄, MoSi₂P₄ and MoSi₂As₄, respectively.

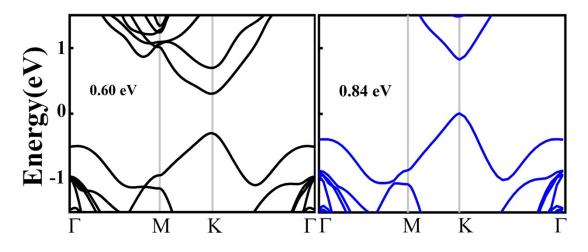


Fig S3. The calculated band structures by PBE (left) and HSE06 (right) methods for MoSi₂As₄ monolayer.

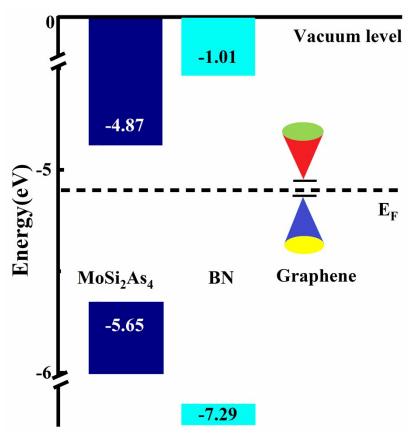


Fig S4. The band alignment of Graphene/BN/MoSi_2As_4 heterostructure calculated by HSE06 functional.