Supporting Information

Tunable Schottky and Ohmic contacts in Ti₂NF₂/α-Te van der Waals heterostructure

Jingwen Jiang^a, Yiguo Xu^{b,*}, Xiuwen Zhang^{a§}

^aShenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

^bAcademy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China

[§]Current address: Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA

 Table S1. The lattice constants, interlayer distances and binding energies of all

 stacking configurations, respectively.

Stacking configurations	Т	V	Н
Lattice constants (Å)	a=b=12.16	a=b=12.18	a=b=12.18
Interlayer distances (Å)	3.26	3.20	3.18
Binding energies (eV)	-1.19	-1.55	-1.56

Figure S1. Band structures of (a) α -Te and (b) Ti₂NF₂ with (red, dashed line) and without (blue, solid line) inclusion of SOC.

Figure S2. Top and side views of the optimized structures of the T, V, and H configurations for the Ti_2NF_2/α -Te vdW heterostructure.

Figure S3. The band structure of V-type Ti_2NF_2/α -Te.

Figure S4. Band structure of standing alone α -Te with the strained lattice constants in the heterostructure.

Figure S5. The projected band structures of Ti_2NF_2/α -Te heterostructure for (a) SOC and (b) HSE06 calculations, respectively.

Figure S6. The projected band structures of Ti_2NF_2/α -Te heterostructure under -0.6 eV/Å for (a) SOC and (b) HSE06 calculations, respectively.

Figure S7. The projected band structures of Ti_2NF_2/α -Te heterostructure under 0.6 eV/Å for (a) SOC and (b) HSE06 calculations, respectively.

Figure S8. The projected band structures of Ti_2NF_2/α -Te heterostructure with interlayer distance 2.0 Å for (a) SOC and (b) HSE06 calculations, respectively.

Figure S9. The calculated effective external vertical pressure as a function of the reduced interlayer distance Δd .