Supporting Information

Theoretical design of platinum-sliver single atom alloy catalyst with

CO adsorbate-induced surface structures

Minghao Hua¹, Xuelei Tian^{1, *}, Shuo Li¹, Anchen Shao¹, Xiaohang Lin^{1. *}

¹ Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China

* Correspondence:

Xiaohang Lin

lxh12345@sdu.edu.cn

Xuelei Tian tianxuelei@sdu.edu.cn

Figure S1 MC snapshots of the atomic structures of CO/Vac-Pt/Ag(111) with 10% Pt and CO coverage of 0.25ML and 1 ML at 600 K and 1500 K.

Figure S2 MC snapshots of the atomic structures of CO/Vac-Pt/Ag(111) with 20% Pt and CO coverage of 0.25ML and 1 ML at 600 K and 1500 K.

Figure S3 MC snapshots of the atomic structures of CO/Vac-Pt/Ag(111) with 30% Pt and CO coverage of 0.25ML and 1 ML at 600 K and 1500 K.

Table S1 The free energies of the four e- ORR reactions on Pd3Ag(111) surface without and with solvent, as well as the corresponding theoretical limiting potential and overpotential.

Surface model	$\Delta G_1(eV)$	$\Delta G_2(eV)$	$\Delta G_3(eV)$	$\Delta G_4(eV)$	$U_L(V)$	$\eta(V)$
without solvent	-1.01	-2.19	-0.91	-0.82	0.82	0.41
with solvent	-1.24	-1.95	-0.94	-0.79	0.79	0.44