Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Desulfurization Mechanism of Thioether Compounds in Heavy Oil on the (111) Surface of Inverse Spinel Fe₃O₄

Chen Li^{1, 2*}, Mengmeng Zhao¹, Xing Wang¹, Zheng Fang¹, Yanling Chen², Haifeng Bao^{1*}

1. School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, 1 Jiangxia Road, Wuhan 430200, China

 Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China Correspondence: cli@wtu.edu.cn (C. Li), baohaifeng@wtu.edu.cn (H. Bao)

Fe₃O₄ preparation:

2 mmol of $Fe(NO_3)_3 \cdot 9H_2O$ was dissolved in 50 mL of ethylene glycol under ultrasonic treatment for 20 min to ensure the solid was it fully dissolved completely. Then, pre-configured NaOH solution (6 mol/L) was added to $Fe(NO_3)_3$ solution drop by drop to adjust pH to 9-10. After the solution was stirred evenly, it was transferred to a PTFE liner in a stainless-steel reactor at 180°C for 24 h. After the reaction, the mixture was transferred to a large beaker and washed with distilled water until the upper clear liquid was neutral. Furthermore, the precipitation (Fe₃O₄) was separated and dried overnight under vacuum. Finally, the sample was ground for use.

Figure S1

Figure S1 Structure of optimized Fe₃O₄ unit cell, dimethyl sulfide and water molecule models Figure S2

Figure S2 GC-MS spectra of reaction system before and after catalytic reaction; inset shows the amplification of $C_2H_6SC_2H_6$ species.

Referring to the rate-determining step of C-S bond decomposition in thioethers, we simulated the first step of C-S bond dissociation in C_4H_8S and C_4H_4S to compare the catalytic mechanism of different S-containing compounds during aquathermolysis, of which the calculated results were illustrated in **Figure S3** and **Figure S4** Under attack of free H₂O, C-S bond length in C_4H_8S was enlarged to 1.857 Å from 1.837 Å, meanwhile, the O-H in H₂O was extended to 0.982 Å. As the reaction advanced, C-S bond and O-H bond were destroyed, producing final HSC₄H₈OH with S atom and O atom anchored to two nearby Fe atoms. The reaction barrier was 0.779 eV, higher than that of CH₃SCH₃, which should be mainly resulted from the interspace resistance caused by its cyclic structure. Simultaneously, the reaction energy was 0.203 eV indicating an endothermic reaction, high than that of CH₃SCH₃, which should also be relevant to the interspace resistance of the molecule.

Analogously, with respect to C_4H_8S , the existence of H_2O also enlarged the length of C-S bond (1.714 Å \rightarrow 1.736 Å), meanwhile, the O-H bond was extended to 0.977 Å. As the reaction advanced, C-S bond and O-H bond were broken down, with the S atom and O atom in the final HSC₄H₄OH product absorbed to two contiguous Fe atoms. The corresponding activate energy and reaction heat were 1.995 eV and 0.584 eV, higher than C_4H_8S and CH_3SCH_3 , which was not only because of the ring structure but the conjugated electrons in the molecule. Herein, the dissociation activity of different S-containing compound followed the trend of straight-chain saturated thioethers > thiophanes > thiophenes could be concluded.

Figure S3

Reaction coordinate

Figure S3 The structure and energy variety of optimized Fe_3O_4 (111) and C_4H_8S during catalytic reaction with assistance of free H_2O molecule

Reaction coordinate

Figure S4 The structure and energy variety of optimized Fe₃O₄ (111) and C₄H₄S during catalytic reaction with assistance of free H₂O molecule

According to optimized catalytic test condition (30% H₂O, 200° C/12 h), the decomposition results of C₄H₈SH, C₄H₈S, C₄H₄S were illustrated in **Figure S5**. After reaction, the decrease of C₄H₈SH and C₄H₈S model was 39.38%, 9.92%, while, the corresponding conversion was 90.86% and 99.22%, which demonstrated the reduced model molecules were almost completely decomposed, indicating a catalytic reduction

efficiency matched the regulation of C₄H₈SH> C₂H₆SC₂H₆>C₄H₈S. With respect to C₄H₄S, the removal rate was 9.77%, which was parallel with that of C₄H₈S, however, only 10.08% of the eliminated molecules was transformed to small ones, leaving 89.92% of complicated large S-containing compounds. Such a result indicated that C₄H₄S was much more difficult to be dissociated than C₄H₈S, which was coincident with the above theorical conclusion. As a result, thiophene-structure molecules should be the most stable S-containing compounds. For this reason, it could be envisioned that removal of thiophene compounds was hard in aquathermolysis. Consequently, hydrogen donors usually were employed to promote the conversion of thiophenes to thiophanes, leading to an enhanced viscosity reduction during heavy oil catalytic aquathermolysis¹⁻²

Figure S5

Figure S5 Removal rate and transformation rate of C₄H₉SH, C₂H₆SC₂H₆, C₄H₈S, C₄H₄S under equal reaction condition (30% H₂O, 200°C/12 h)

 Hart, A.; Lewis, C.; White, T.; Greaves, M.; Wood, J., Effect of cyclohexane as hydrogen-donor in ultradispersed catalytic upgrading of heavy oil. *Fuel Processing Technology* 2015, *138*, 724-733.
Yusuf, A.; Al-Hajri, R. S.; Al-Waheibi, Y. M.; Jibril, B. Y., In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor. *Journal of Analytical and Applied Pyrolysis* 2016, *121*, 102-112.