Electronic Supplementary Information

A study combining magic-angle spinning NMR and small-angle X-ray scattering

on the interaction in the mixture of poly(benzyl methacrylate) and ionic liquid 1-

ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

Takeshi Morita,^{1,*} Hitomi Okada,² Taisei Yamada,¹ Ryo Hidaka,² Takeshi Ueki,^{3,4} Kazuyuki Niitsuma,⁵ Yuzo Kitazawa,⁵ Masayoshi Watanabe,^{5,6} Keiko Nishikawa^{1,7} and Kenjirou Higashi^{2,*}

- 1 Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
- 2 Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- 3 Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- 4 Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- 5 Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- 6 Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- 7 Toyota Physical & Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan

Corresponding authors

*Email: T Morita (moritat@faculty.chiba-u.jp) or K Higashi (ken-h@faculty.chiba-u.jp)

Overlap concentration

On the basis of the Guinier approximation,¹ the radius of gyration, R_g , of the PBnMA chain was evaluated to be 3.6±0.1, 4.5±0.2 and 5.8±0.5 nm for the polymers with $M_w = 18$, 27 and 40 kDa, respectively. The Guinier plots of the SAXS profiles for the polymer with $M_w = 18$, 27 and 40 kDa are shown in Fig. S1. The R_g values were determined by iteration with checking the consistency between the evaluated R_g value and the appropriate *q*-region as determined on the basis of $1/R_g$. The overlap

concentrations, c^* , for the polymers with $M_w = 18$, 27 and 40 kDa were approximately estimated to be 0.16, 0.12 and 0.080 g/mL (corresponding to *ca*. 16, 12 and 8.0 wt%), respectively, using the equation $c^* = 3M_w/(4\pi N_A R_g^3)$, where N_A is the Avogadro's number.^{2,3} Considering the estimated concentrations, the concentration studied here was sufficiently low compared with c^* .

Fig. S1: The Guinier plots, $\ln I(q)$ vs. q^2 , of the SAXS profiles for PBnMA in [C₂mim][NTf₂]. Solid lines represent the determined slope for evaluation of radius of gyration, R_g , using the appropriate small-angle region below $q = 1/R_g$. Green arrows indicate the appropriate q-region as determined on the basis of $1/R_g$.

Concentration dependence of radius of gyration

Fig. S2 shows concentration dependence of the evaluated R_g for the polymer of $M_w = 18$ kDa. The R_g values at concentrations of 0.10, 0.25 and 1.0wt% were evaluated using the Guinier approximation.¹ Although the concentration of 1wt% is considered as sufficiently low compared with c^* , the R_g values showed concentration dependence and increased with decreasing the concentration. The tendency identified in Fig. S2 is normally observable in solution systems.⁴

Fig. S2: Concentration dependence of R_g for PBnMA with $M_w = 18$ kDa in [C₂mim][NTf₂].

Fig. S3 shows dependence of the infinite dilution radius of gyration, $R_g(c \rightarrow 0)$, on the molecular weight. The molecular weights were set at $M_w = 18$, 27, 40 and 78 kDa.

Fig. S3: Dependence of $R_g(c \rightarrow 0)$ on molecular weight of PBnMA.

References

- 1. A. Guinier and G. Fournet, *Small-angle Scattering of X-rays*, Wiley, New York, 1955.
- J. P. Cotton, M. Nierlich, F. Boué, M. Daoud, B. Farnoux, G. Jannink, R. Duplessix and C. Picot, J. Chem. Phys., 1976, 65, 1101–1108.
- 3. Q. Ying and B. Chu, *Macromolecules*, 1987, **20**, 362–366.
- 4. O. Glatter and O. Kratky, *Small Angle X-Ray Scattering*; Academic Press: New York, 1982.