Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information for

A comparative study on the reactivity of ditantalum deuteride cluster anions Ta₂D₂⁻ and Ta₂D₄⁻ toward N₂

Xin Cheng,^{abc} Zi-Yu Li,*ac Li-Hui Mou,^{abc} Qing-Yu Liu,^{ac} and Sheng-Gui He*abc

^a State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

° Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of

Excellence in Molecular Sciences, Beijing 100190, P. R. China

*Corresponding authors. E-mails:

liziyu2010@iccas.ac.cn (Z.-Y. L.), shengguihe@iccas.ac.cn (S.-G. H.).

Table of Contents

- **1** Additional theoretical Methods
- 2 Additional experimental results

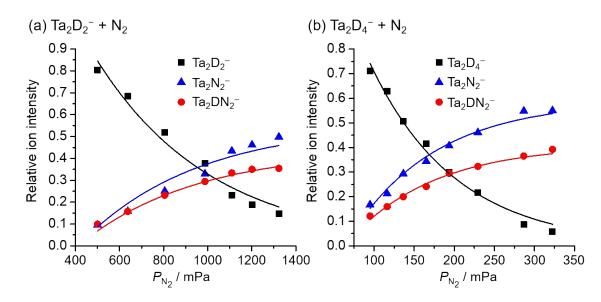
3 Additional theoretical results

- 3.1 Choice of theoretical methods
- 3.2 Structural characterization of $Ta_2D_{2,4}^-$
- 3.3 Structural isomers of $Ta_2D_{2,4}{}^-,\,Ta_2N_2{}^-,\,Ta_2DN_2{}^-,\,and\,Ta_2D_{2,4}N_2{}^-$
- 3.4 Reaction mechanisms of $Ta_2D_2^-$ (²R1/²R2) +N₂
- 3.5 Reaction mechanisms of $Ta_2D_4^-\,(^2R3/^2R4)$ +N_2
- 3.6 Potential energy profiles for the isomerization of $^2R1 \rightarrow {}^2R2$ of $Ta_2D_2{}^-$ and ${}^2R3 \rightarrow {}^2R4$ of

 $Ta_2D_4^-$

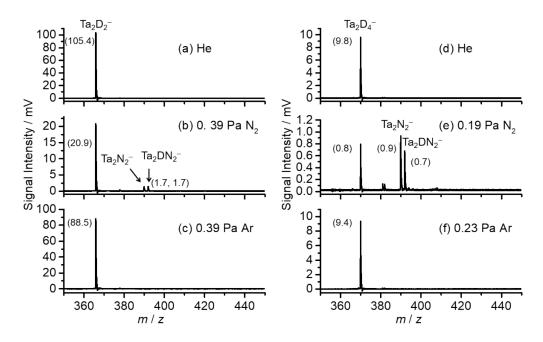
- 3.7 The calculated VDEs and the binding energy of N_2 of all intermediates
- 3.8 Molecular orbital analysis of $Ta_2D_2^- \,and \, Ta_2D_4^-$

4 References


1 Additional theoretical Methods

Based on the structures calculated at the M06 functional level, the single point energies of reactants and adsorption complexes were recalculated by the high-level partially spin-adapted open-shell coupled-cluster method with single, double, and perturbative triple excitations [RCCSD(T)]¹⁻⁴ using the Molpro program package.⁵ In these CCSD(T) calculations, all the valence electrons were correlated. The basis set used for all atoms were aug-cc-pVDZ and aug-cc-pVTZ (denoted as ADZ and ATZ).⁶⁻⁸ The two-point complete basis set (CBS) limit extrapolations for total electronic energy were obtained by ADZ/ATZ pair of basis sets (ADZ and ATZ are augmented double-ζ and triple-ζ correlation consistent basis sets, respectively) based on equation 1,⁹ which has been recently found to be superior to alternative extrapolation schemes.¹⁰

$$E_{total,n} = E_{total,CBS} + \frac{A}{\left(n + 1/2\right)^4} \tag{1}$$

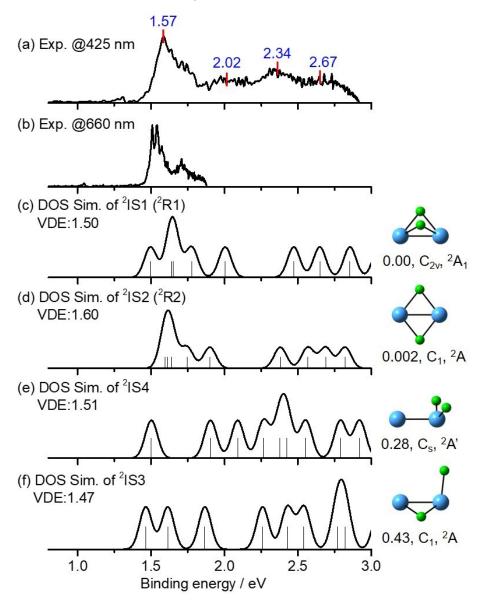

Note that a diagnostic criterion has been examined to evaluate the suitability of single-reference wave function-based methods for $Ta_2D_{2,4}^{-}$ and products.^{11,12}

2 Additional experimental results

Fig. S1 Variation of ion intensities with respect to the partial pressures of N_2 in the reactions of (a) $Ta_2D_2^-$ and (b) $Ta_2D_4^-$ with N_2 . The data points were experimentally measured and the solid lines

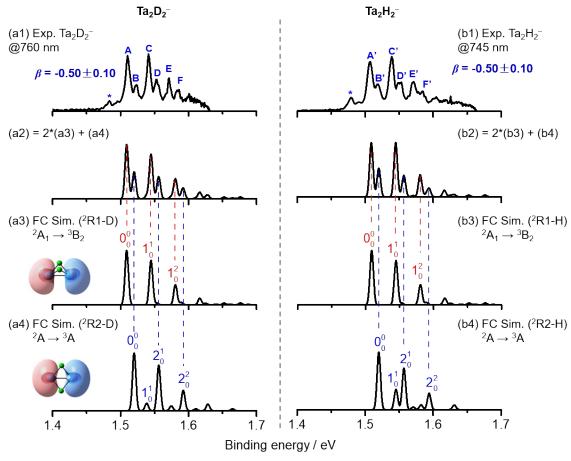
were calculated on the basis of rate constants determined form least-squares fitting.

Fig. S2 Time-of-flight mass spectra for the reactions of $Ta_2D_2^-$ cluster anion with (a) He, (b) 0.39 Pa N₂ and (c) 0.39 Pa Ar for about 8.6 ms, the reactions of $Ta_2D_4^-$ cluster anion with (d) He, (e) 0.19 Pa N₂ and (f) 0.23 Pa Ar for about 1.6 ms.


3 Additional theoretical results

3.1 Choice of theoretical methods

Table S1. Experimental and calculated bond dissociation enthalpies [D_0 (A-B) at 0 K, given in eV] of typical diatomic species containing Ta, H, and N atoms as well as the adiabatic electron detachment energy / vertical electron detachment energy (ADE/VDE) of Ta₂D₂⁻ (given in eV). The standard deviation (σ) of calculated values (D_0 , _{calc}) with respect to experimental data (D_0 , _{expt}) is given.


		<i>D</i> ₀ (A-B) / eV					$Ta_2D_2^-$		
		Ta-Ta	Ta-N	Ta ⁺ -H	N-N	H-H	ADE	VDE	σ
	Expt. ¹³	4.00	6.25	2.35	9.75	4.48	1.51	1.54	
	M06	3.62	6.72	2.43	9.27	4.32	1.42	1.45	0.064
	B3P86	3.44	6.36	2.29	9.78	4.50	1.69	1.73	0.086
Unhaid	B3LYP	2.86	6.14	2.35	9.60	4.42	1.24	1.27	0.143
Hybrid Functionals	B3PW91	3.31	6.09	2.05	9.43	4.29	1.16	1.18	0.149
Functionals	PBE1PBE	3.17	6.00	1.86	9.42	4.16	1.12	1.11	0.184
	B1B95	3.06	6.07	2.07	9.44	4.30	1.06	1.1	0.185
	B1LYP	2.49	5.83	2.53	9.33	4.36	1.08	1.1	0.213
	BMK	2.19	5.99	2.12	9.49	4.29	1.13	0.69	0.289
	M062X	2.46	5.60	2.27	9.44	4.31	0.64	0.64	0.345
Pure Functionals	BP86	4.37	7.03	2.80	10.25	4.50	1.36	1.4	0.107
	BPW91	4.34	6.79	2.45	9.95	4.24	1.18	1.22	0.124
	BLYP	3.72	6.82	2.55	10.09	4.40	1.18	1.21	0.128
	PBEPBE	4.43	7.01	2.62	10.24	4.20	1.22	1.25	0.129
	BPBE	4.39	6.80	2.44	9.95	4.22	1.17	1.2	0.131
	TPSS	4.13	6.63	2.66	9.53	4.54	1.13	1.16	0.144
	M06L	3.84	6.24	2.35	9.41	4.17	1.00	1.04	0.179

3.2 Structural characterization of Ta₂D_{2,4}⁻

Fig. S3 (a and b) The experimental photoelectron spectra of $Ta_2D_2^-$ at 425 nm and 660 nm, respectively. (c-f) The simulated DOS spectra and structures of the low-lying isomers of $Ta_2D_2^-$. The relative energies with respect to the lowest-lying isomer calculated by RCCSD(T) in unit of eV, the symmetries and the electronic states are listed below the structures. The RCCSD(T)-calculated VDEs are listed in the unit of eV.

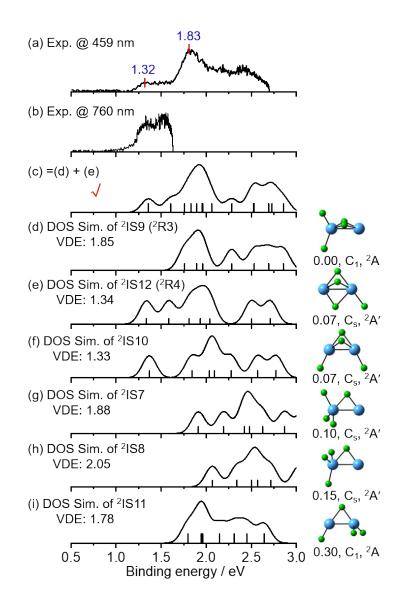
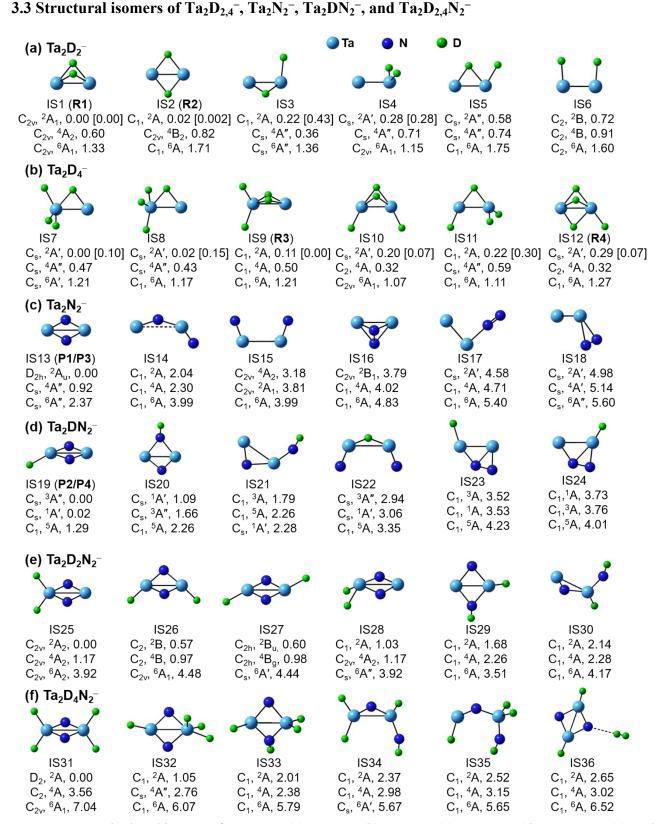
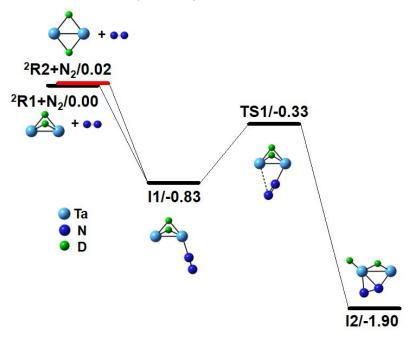

The experimental photoelectron spectrum of $Ta_2D_2^-$ recorded with 425 nm photons (Fig. S3a) reveals four major peaks centred at 1.57, 2.02, 2.34, and 2.67 eV, respectively, and the experimental VDE value of $Ta_2D_2^-$ can be determined to be 1.54 eV at a wavelength of 660 nm (Fig. S3b). The RCCSD(T)-calculated VDEs of ²IS1 (²R1 in the main text) and ²IS2 (²R2 in the main text) are 1.50 and 1.60 eV, respectively, which are very close to the experimental value (1.54 eV). In addition, the simulated DOS spectra of ²IS1 and ²IS2 both can resonable reproduce most part of the experimental spectrum (Fig. S3a). The other isomers ²IS3 and ²IS4 can be exclusted due to the obvious high relative energies with respect to the most stable isomer ²IS1 (²IS3: 0.43 eV, ²IS4: 0.28 eV). Therefore, ²IS1 and ²IS2 could be the probable isomers of $Ta_2D_2^-$ generated in experiments.

Fig. S4 (a1 and b1) The experimental photoelectron spectra of $Ta_2D_2^-$ at 760 nm and $Ta_2H_2^-$ at 745 nm, respectively. The simulated FC spectra of low-lying isomers of $Ta_2D_2^-$ (a2-a4) and $Ta_2H_2^-$ (b2-b4). The peaks in panels a3, a4, b3, and b4 are red shifted by 0.01 eV, 0.11 eV, 0.01 eV, and 0.11 eV, respectively. The highest occupied molecular orbitals (HOMOs) for each isomer are shown.


Vibrationally resolved detachment spectra for $Ta_2D_2^-$ and $Ta_2H_2^-$ were obtained at the wavelength of 760 nm and 745 nm, repsectively. Note that the peaks labelled with asterisk in Fig. S4 are possibly contributed by the hot bands. Measurement of the photoelectron angular distribution (PAD) of features labeled in Fig. S3a reveals that all transitions fall into one group with the same angular distributions since all the peaks show negative values of the anisotropy parameter ($\beta < 0$), corrpsonding to electron detachment from p or d type atomic orbitals.

DFT calculations predict two low-lying isomers for $Ta_2D_2^{-}$ (²R1 and ²R2). The Franck-Condon (FC)-simulated spectrum of the ³B₂ \leftarrow ²A₁ vibrational transition for ²R1 can reproduce the three strong vibrationally resolved peaks (A, C, and E) in the experimental spectrum, corresponding to a stretching vibration of the two Ta atoms (v_1 , ~289 cm⁻¹). Besides, the calculated results show that a low-lying isomer of $Ta_2D_2^{-}$ (²R2) with 0.002 eV higher than the ground state structure (²R1) has a similar FC simulated spectrum that can contribute to the remainder of the experimental spectrum (B, D, and F). The FC simulated spectrum of ²R2-D ($Ta_2D_2^{-}$, Fig. S4a4) contains a dominant progression from the Ta-Ta stretching mode (v_2 , 290 cm⁻¹) modulated by a weak progression for the wagging mode of two D atoms (v_1 , ~145 cm⁻¹). For ²R2-H ($Ta_2H_2^{-}$, Fig. S4b4), the frequency of the wagging mode of two D atoms changes to 202 cm⁻¹. Note that the major progressions all come from the Ta-Ta stretching, as a result, the isotopic labelling would not influence the experimental results, which rationalizes the almost same spectra for $Ta_2D_2^{-}$ (Fig. S4a1) and $Ta_2H_2^{-}$ (Fig. S4b1).


Fig. S5 (a and b) The experimental photoelectron spectra recorded with 459 nm and 760 nm laser excitations at 10 K for $Ta_2D_4^-$, respectively. (c-i) The simulated density-of-state (DOS) spectra and structures of the low-lying isomers of $Ta_2D_4^-$. The simulated DOS spectrum of ²R3 is red shifted by 0.08 eV. The relative energies with respect to the lowest-lying isomer calculated by RCCSD(T) in unit of eV, the symmetries and the electronic states are listed below the structures. The RCCSD(T)-calculated VDEs are listed in the unit of eV.

For Ta₂D₄⁻, two broad bands centred at 1.32 eV and 1.83 eV are present at 459 nm excitation (Fig. S5a). The calculated lowest-lying isomer ²IS9 (²R3 in the main text) of Ta₂D₄⁻ features two bridging D atoms and two terminal D atoms. The DOS-simulated spectrum of ²IS9 (Fig. S5d) can reasonably reproduce the experimental spectrum from 1.50 to 2.75 eV, and the calculated VDE of ²IS9 is close to the experimental value (1.85 eV *vs* 1.83 eV), suggesting that the ²IS9 is the most probable species of Ta₂D₄⁻ generated in the experiment. In addition, the simulated spectrum of the low-lying isomer ²IS12 (²R4 in the main text) with three bridging D atoms and one terminal D atom (Fig. S5e) can well reproduce the two bands around over the range of 1.0~1.6 eV in the experimental spectrum recorded at 760 nm (Fig. S5b) in terms of VDE (1.34 eV *vs* 1.32 eV) and spectral patterns. Therefore, both ²IS9 and ²IS12 may contribute to the Ta₂D₄⁻ species in experiments.

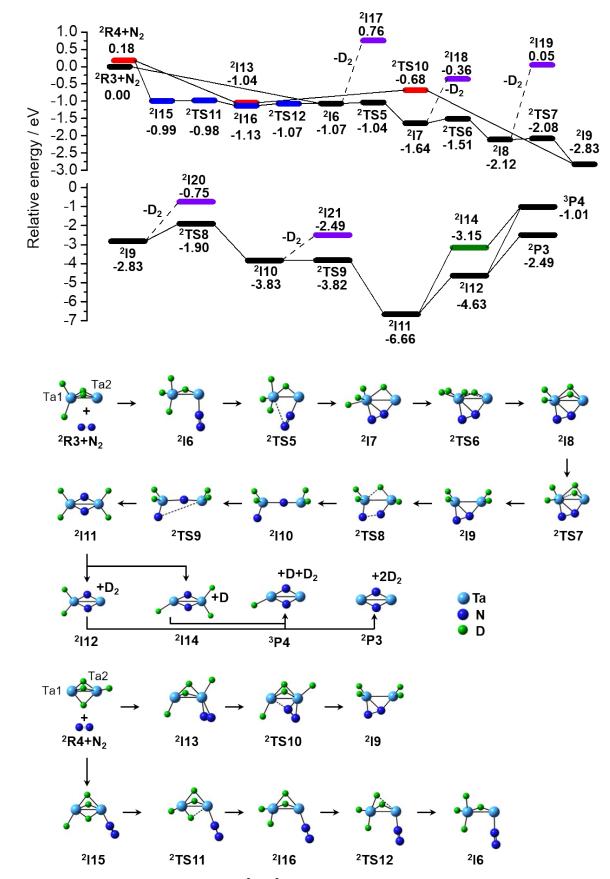


Fig. S6 DFT calculated isomers for $Ta_2D_2^-(a)$, $Ta_2D_4^-(b)$, $Ta_2N_2^-(c)$, $Ta_2DN_2^-(d)$, $Ta_2D_2N_2^-(e)$ and $Ta_2D_4N_2^-(f)$. The relative energies (ΔH_0 , in eV) with respect to the lowest-lying isomers are given below the structures. The RCCSD(T)-calculated relative energies are given in brackets.

3.4 Reaction mechanisms of $Ta_2D_2^-\left({}^2R1/{}^2R2\right)+\!N_2$

Fig. S7 The potential energy surface of ${}^{2}R1/{}^{2}R2 + N_{2}$. The zero-point vibration corrected energies of intermediates (I*n*) and transition states (TS*n*) relative to the separated reactants (${}^{2}R1 + N_{2}$) are in eV.

3.5 Reaction mechanisms of $Ta_2D_4^-$ (²R3/²R4) +N₂

Fig. S8 The potential energy surface of ${}^{2}R3/{}^{2}R4 + N_{2}$. The zero-point vibration corrected energies of intermediates (I*n*) and transition states (TS*n*) relative to the separated reactants (${}^{2}R3 + N_{2}$) are in eV.

3.6 Potential energy profiles for the isomerization of $^2R1 \rightarrow ^2R2$ of $Ta_2D_2^-$ and $^2R3 \rightarrow ^2R4$ of $Ta_2D_4^-$

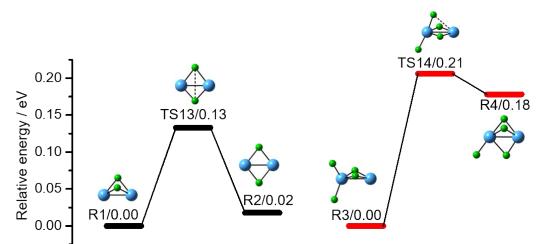


Fig. S9 The DFT-calculated potential energy profiles for the isomerization of ${}^{2}R1 \rightarrow {}^{2}R2$ of $Ta_{2}D_{2}^{-}$ and ${}^{2}R3 \rightarrow {}^{2}R4$ of $Ta_{2}D_{4}^{-}$. The relative energies with respect to lowest-lying isomer are given in eV.

3.7 The calculated VDEs and the binding energy of $N_2\, of\, all$ intermediates

Table S2. The calculated VDEs and the binding energy of N ₂ of all intermediates on the potential
energy profile for the reaction of $Ta_2D_2^- + N_2$ and $Ta_2D_4^- + N_2$.

isomer	VDE (eV)	The binding energy of N_2 (eV)			
I1	1.63	0.83			
I2	1.84	1.90			
I3	1.57	2.03			
I4	3.45	3.80			
I5	1.47	5.93			
I6	1.83	1.07			
Ι7	2.64	1.64			
I8	1.86	2.12			
I9	2.37	2.83			
I10	3.72	3.83			
I11	1.53	6.66			

3.8 Molecular orbital analysis of $Ta_2D_2^-$ and $Ta_2D_4^-$

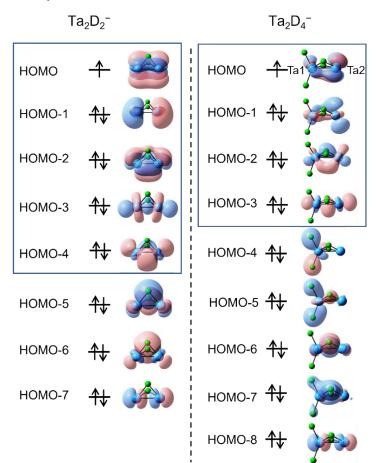


Fig. S10 Molecular orbital analysis of $Ta_2D_2^-$ and $Ta_2D_4^-$. The up and down arrows denote α and β electrons.

The molecular orbital analysis was carried out and the result was added as Fig. S10. Five occupied molecular orbitals (HOMO to HOMO-4) are composed of s/d atomic orbitals of Ta in Ta₂D₂⁻. When the two additional D atoms bond with Ta₂D₂⁻ to form Ta₂D₄⁻, two electrons from the occupied MO pair with the single electrons from D atoms to form two new Ta-D bonds (HOMO-4 and HOMO-5 in Ta₂D₄⁻). In addition, two of the five MOs (HOMO-2 and HOMO-3 in Ta₂D₄⁻) almost remain unchanged upon the D atoms bonding. While the first two MOs (HOMO and HOMO-1) rearrange upon the D atom addition with the electron densities around Ta1 shifting to Ta2 atom. As a result, the electron densities are more localized on Ta2 atom in Ta₂D₄⁻ than that in Ta₂D₂⁻, which plays a vital role to facilitate the approaching of N₂ towards Ta2 as well as to maximize the overlap between the occupied MO in Ta₂D₄⁻ and the empty MO in N₂, as shown in Figs. 4 and 5 in the main text.

4 References

- 1 G. D. Purvis III and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910-1918.
- 2 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, **157**, 479-483.
- 3 J. D. Watts, J. Gauss and R. J. Bartlett, J. Chem. Phys., 1993, 98, 8718-8733.
- 4 P. J. Knowles, C. Hampel and H. J. Werner, J. Chem. Phys., 1993, 99, 5219-5227.
- H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Koppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pfluger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang and A.Wolf, MOLPRO, version 2010.1 A Package of ab initio Programs, See <u>http://www.molpro.net</u>.
- 6 R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796-6806.
- 7 T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007-1023.
- 8 N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2005, **123**, 064107.
- 9 J. M. L. Martin, Chem. Phys. Lett., 1996, 259, 669-678.
- 10 D. Feller, K. A. Peterson and J. G. Hill, J. Chem. Phys., 2011, 135, 044102.
- 11 T. J. Lee and P. R. Taylor, Int. J. Quantum Chem., 1989, 36, 199-207.
- 12 S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 1974, 8, 61-72.
- 13 Y. R. Luo, *Comprehensive Handbook of Chemical Bond Energies*. CRC Press: Boca Raton, FL, 2007.