Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

This journal is © the Owner Societies 2019

Aqueous Microsolvation of 4-hydroxy-2-butanone: Competition

between intra- and inter-Molecular hydrogen bonds

Meng Li,^a Yang Zheng,^a Jiayi Li,^a Xuefang Xu,^a Jens-Uwe Grabow,^b Qian Gou*^a

^a School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55,

401331, Chongqing, China.

^b Institut für Physikalische Chemie & Elektrochemie, Gottfried-Wilhelm-Leibniz-Universität, Hannover,

Callinstr. 3A, 30167 Hannover, Germany.

* Corresponding Author, email: qian.gou@cqu.edu.cn

1. Figure Fig.1 The NCI and QTAIM analyses for conformer I of 4H2B.

2. <u>Tables S1-S6</u> The measured transition frequencies v of the six isotopologues of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit

- 3. <u>Table S7</u> The SE rotational constants of the six isotopologues of the 4H2B monomer.
- 4. <u>Table S8</u> The r_s , r^{SE} , r_e coordinates of the six isotopologues of the 4H2B monomer
- 5. <u>Table S9</u> The r_s , r^{SE} and r_e structural parameters of conformer I of the 4H2B monomer
- 6. <u>Table S10</u> Geometries of conformer I of the 4H2B monomer calculated at B3LYP-(GD3BJ)/6-311++G(d,p).

7. <u>Tables S11-S15</u> The measured transition frequencies v of the five isotopologues of the 4H2B-H₂O complex with quantum numbers and difference to calculated frequencies Δv in the fit.

8. Table S16 Geometries of isomer I of the 4H2B-H₂O complex calculated at B3LYP-(GD3BJ)/6-311++G(d,p).

1. The NCI analysis for conformer I of 4H2B. (Fig. 1)

Fig. 1 (a)The NCI plots for conformer I of 4H2B. Blue and green color signify the strong and weak attractive interaction respectively, while red color indicates repulsive interaction. (b)QTAIM analysis (kJ mol⁻¹). Orange dots show the BCPs and brown lines show the bond paths.

2. The measured transition frequencies v of the six isotopologues of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit. (Tables S1-S6)

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	A	8407.8704	0.8
	Ε	8407.0600	1.6
2 ₁₂ -1 ₁₁	A	8067.0262	0.4
	Ε	8149.2585	1.8
2 ₁₁ -1 ₁₀	A	8786.0263	0.1
	Ε	8703.0646	2.1
303-202	Α	12565.4711	1.1
05 02	Е	12564.0487	0.1
312-212	Α	12089.1348	0.6
15 12	Е	12120.0668	1.3
312-211	Α	13167.0277	0.1
- 12 11	E	13134.8924	0.1
404-302	Ā	16669.3607	1.9
-04 -03	F	16667.0637	2.1
414-312	Ā	16098.3881	2.6
.14 015	F	16111.2410	1.7
4.2-3.2	<u>-</u> Д	17532 7520	37
113 012	F	17518 1412	2 5
4	Δ	16838 4501	13.1
-23 322	F	16916 6241	2.8
13	<u>L</u>	17021 9901	1 5
-22 321	F	169/2 8191	5 1
5	Δ	20091 8333	5.1
J ₁₅ -+14	- -	20091.0355	5. 4 4.6
1 _1	L	5271 7701	4.0
L ₁₀ - L ₀₁	A F	5371.7791	0.0
1 0	E	0225 5420	4.0
1 ₁₁ -0 ₀₀	A F	9223.3430	5.5
2 2	E	5055.0246	0.0
Z ₁₁ -Z ₀₂	A	5749.9390	4.4
2 2	E	5795.1864	0.1
Z ₂₁ -Z ₁₂	A	16115.0579	9.4
2	E	15579.7518	5.9
2 ₂₀ -2 ₁₁	A	15055.2186	1.9
	E	15463.0197	4.1
2_{12} - 1_{01}	A	13079.3045	2.0
	E	12991.9834	0.6
3 ₁₂ -3 ₀₃	A	6351.4953	5.3
	E	6366.0311	1.0
3 ₂₂ -3 ₁₃	A	16665.7099	10.7
	E	16135.2659	2.7
3 ₂₁ -3 ₁₂	A	14602.2321	4.7
	E	15005.4243	0.9
3 ₀₃ -2 ₁₂	A	7894.0355	1.4
	E	7979.1246	1.5
3 ₁₃ -2 ₀₂	A	16760.5708	1.3
	Ε	16704.9911	2.6
4 ₁₃ -4 ₀₄	A	7214.8882	5.1
	Ε	7217.1113	3.3
4 ₂₃ -4 ₁₄	A	17405.7601	9.4
	Е	16940.6549	4.3
4 ₂₂ -4 ₁₃	A	14091.4705	2.2
	Ε	14430.1015	7.7
4 ₀₄ -3 ₁₃	A	12474.2612	4.2
	Ε	12526.1209	0.1
5 ₁₄ -5 ₀₅	A	8384.2558	2.4
	Е	8381.4725	1.8
5 ₂₄ -5 ₁₅	A	18338.5890	22.0
	Е	17980.6984	4.9
5 ₂₃ -5 ₁₄	A	13598.0718	5.8
	Е	13830.9260	7.7
5 ₀₅ -4 ₁₄	A	17083.1691	7.8

Table S1 The measured transition frequencies v of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

	Ε	17118.6582	6.3	
6 ₁₅ -6 ₀₆	А	9899.9524	21.2	
	Ε	9895.9727	4.5	
6 ₂₄ -6 ₁₅	А	13205.6515	19.5	
	E	13334.8381	12.9	
1 ₁₁ -0 ₀₀	А	9585.0509	2.3	
	E	9712.0814	2.2	
2 ₁₂ -1 ₀₁	А	14157.8102	4.4	
	E	14202.2444	0.5	
3 ₂₂ -3 ₁₂	А	14509.3114	4.9	
	E	13910.1777	5.8	
3 ₁₂ -2 ₀₂	А	18916.9670	4.8	
	Ε	18930.0776	1.1	

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	∆v/kHz
2 ₀₂ -1 ₀₁	A	8321.6214	0.8
	E	8320.8245	1.9
2 ₁₂ -1 ₁₁	A	7986.6812	0.6
	Ε	8068.4975	1.5
2 ₁₁ -1 ₁₀	A	8692.7211	1.4
	Ε	8610.1886	1.3
3 ₀₃ -2 ₀₂	A	12437.5174	0.1
	Ε	12436.1257	2.4
3 ₁₃ -2 ₁₂	A	11968.9633	1.3
	Ε	11999.9177	0.2
3 ₁₂ -2 ₁₁	A	13027.4437	1.4
	Ε	12995.3124	8.9
4 ₀₄ -3 ₀₃	A	16501.3027	0.2
	Ε	16499.0634	5.1
4 ₁₄ -3 ₁₃	A	15938.7700	4.9
	Ε	15951.6586	3.1
4 ₁₃ -3 ₁₂	A	17347.3789	1.0
	Ε	17332.7702	9.4
1 ₁₀ -1 ₀₁	A	5342.5426	10.3
1 ₁₁ -0 ₀₀	A	9159.3790	0.8
	Ε	8990.1027	4.2
2 ₁₂ -1 ₀₁	A	12976.2038	4.3
	Ε	12889.1053	4.6
3 ₀₃ -2 ₁₂	A	7782.9350	2.4
	Ε	7867.8449	5.1
3 ₁₃ -2 ₀₂	A	16623.5457	3.3
	Ε	16568.1985	6.3
4 ₁₃ -4 ₀₄	A	7149.6450	4.8
4 ₂₂ -4 ₁₃	A	14036.2767	3.5
4 ₀₄ -3 ₁₃	A	12315.2744	0.6
	Ε	12366.9906	6.2
5 ₀₅ -4 ₁₄	A	16877.4680	2.3
	E	16912.8763	11.5

Table S2 The measured transition frequencies v for ¹³C4 of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	Α	8391.3815	2.6
	Ε	8390.5573	0.2
2 ₁₂ -1 ₁₁	Α	8044.2160	5.1
	Ε	8124.5068	0.3
2 ₁₁ -1 ₁₀	А	8778.2181	4.1
	Ε	8697.1993	2.7
3 ₀₃ -2 ₀₂	А	12537.8373	1.9
	Ε	12536.3848	2.0
3 ₁₃ -2 ₁₂	А	12054.2107	1.4
	Ε	12083.8513	3.8
3 ₁₂ -2 ₁₁	А	13154.5429	0.8
	Ε	13123.6984	0.2
4 ₀₄ -3 ₀₃	А	16627.3858	0.4
	Ε	16625.0272	3.3
4 ₁₄ -3 ₁₃	А	16050.5888	1.1
	Ε	16062.8352	3.3
4 ₁₃ -3 ₁₂	А	17514.5743	2.2
	Ε	17500.5607	0.0
1 ₁₀ -1 ₀₁	Α	5272.0340	1.9
1 ₁₁ -0 ₀₀	А	9110.6472	2.6
	Ε	8946.1668	1.2
2 ₁₁ -2 ₀₂	Α	5658.8707	7.9
2 ₁₂ -1 ₀₁	А	12949.2489	8.9
	Ε	12865.4307	0.9
3 ₁₂ -3 ₀₃	А	6275.5762	4.2
	Ε	6289.1686	7.5
3 ₀₃ -2 ₁₂	А	7979.9699	1.9
	Ε	8061.5115	6.7
3 ₁₃ -2 ₀₂	А	16612.0781	1.7
	Ε	16558.7246	3.7
4 ₁₃ -4 ₀₄	Α	7162.7648	2.0
4 ₀₄ -3 ₁₃	Α	12553.1450	3.7
	Ε	12602.6874	0.6
5 ₀₅ -4 ₁₄	Α	17150.0792	1.2
	Ε	17183.7488	6.1

Table S3 The measured transition frequencies v for ¹³C3 of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	A	8378.9924	1.0
	Ε	8378.1874	0.6
2 ₁₂ -1 ₁₁	A	8040.3373	5.0
	Ε	8122.5398	3.4
2 ₁₁ -1 ₁₀	A	8754.4001	2.4
	Ε	8671.4724	2.7
3 ₀₃ -2 ₀₂	A	12522.8411	1.5
	Ε	12521.4330	1.9
3 ₁₃ -2 ₁₂	A	12049.2680	4.8
	Ε	12080.2782	0.5
3 ₁₂ -2 ₁₁	A	13119.7702	0.2
	Ε	13087.5677	1.6
4 ₀₄ -3 ₀₃	A	16613.7464	1.0
	Ε	16611.4775	3.5
4 ₁₄ -3 ₁₃	A	16045.5249	1.6
	Ε	16058.4223	3.3
4 ₁₃ -3 ₁₂	A	17470.1050	0.1
	Ε	17455.4636	5.3
1 ₁₀ -1 ₀₁	A	5377.3125	2.3
1 ₁₁ -0 ₀₀	Α	9218.9712	5.8
	Ε	9048.9378	1.1
2 ₁₁ -2 ₀₂	A	5752.7201	1.2
	Ε	5798.1863	7.0
2 ₁₂ -1 ₀₁	A	13060.6183	2.3
	Ε	12973.1521	1.3
3 ₁₂ -3 ₀₃	Α	6349.6492	6.7
	Ε	6364.3210	5.5
3 ₀₃ -2 ₁₂	Α	7841.2152	5.4
	Ε	7926.4683	2.0
4 ₁₃ -4 ₀₄	Α	7206.0079	2.6
	Ε	7208.3071	3.4
4 ₀₄ -3 ₁₃	A	12405.6937	1.9
	Ε	12457.6676	6.7
5 ₀₅ -4 ₁₄	A	16999.7221	0.4
	Ε	17035.3310	6.2

Table S4 The measured transition frequencies v for ¹³C2 of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	A	8218.6984	2.2
	E	8217.9484	0.5
2 ₁₂ -1 ₁₁	A	7891.8667	1.4
	Ε	7974.8051	3.7
2 ₁₁ -1 ₁₀	Α	8579.4524	2.1
	Ε	8495.8332	1.5
3 ₀₃ -2 ₀₂	Α	12285.8892	2.7
	Ε	12284.5794	0.3
3 ₁₃ -2 ₁₂	Α	11827.4146	0.0
	Ε	11859.3682	0.8
3 ₁₂ -2 ₁₁	Α	12858.2696	2.3
	Ε	12825.1981	2.5
4 ₀₄ -3 ₀₃	Α	16304.0495	0.7
	Ε	16301.9436	1.9
4 ₁₄ -3 ₁₃	Α	15751.2189	5.5
	Ε	15764.6083	6.3
4 ₁₃ -3 ₁₂	Α	17123.2536	0.5
	Ε	17108.2283	8.3
1 ₁₀ -1 ₀₁	Α	5394.9391	6.7
1 ₁₁ -0 ₀₀	Α	9168.9817	6.8
	Ε	8996.1106	1.7
2 ₁₂ -1 ₀₁	A	5755.6931	1.4
	Ε	12943.0129	5.5
3 ₁₂ -3 ₀₃	A	12853.4202	1.3
	Ε	6328.0734	5.7
3 ₀₃ -2 ₁₂	A	6343.9002	0.3
	Ε	7561.5747	1.0
	Ε	7649.1075	3.3
4 ₀₄ -3 ₁₃	A	12038.2096	1.4
	Ε	12091.6828	1.4
4 ₁₃ - 4 ₀₄	A	7147.2775	3.6
	Ε	7150.1850	3.6
5 ₀₅ -4 ₁₄	A	16548.5261	3.5
	Ε	16585.3981	0.6

Table S5 The measured transition frequencies v for ¹³C1 the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	А	8331.9008	4.2
	Ε	8331.0486	5.0
2 ₁₂ -1 ₁₁	A	7976.5511	2.6
	Ε	8051.2733	4.7
2 ₁₁ -1 ₁₀	A	8730.8005	6.0
	Ε	8655.3297	2.4
3 ₀₃ -2 ₀₂	Α	12443.8641	1.4
	Ε	12442.3667	5.5
3 ₁₃ -2 ₁₂	A	11951.5550	12.5
	Ε	11978.0607	8.7
3 ₁₂ -2 ₁₁	А	13082.1419	0.1
	Ε	13054.3882	7.5
4 ₀₄ -3 ₀₃	А	16493.7520	12.4
	Ε	16491.3256	9.2
1 ₁₁ -0 ₀₀	А	8882.1240	0.7
	Ε	8731.5940	0.3
2 ₁₂ -1 ₀₁	А	12681.8315	2.8
	Ε	12606.4090	7.8
3 ₀₃ -2 ₁₂	А	8093.9334	12.4
	Ε	8167.0063	5.2
4 ₁₃ -4 ₀₄	А	7041.3255	0.8
5 ₀₅ -4 ₁₄	А	12636.1305	3.5
	Ε	12680.2712	1.1

Table S6 The measured transition frequencies v for ¹⁸O6 of the 4H2B monomer with quantum numbers and difference to calculated frequencies Δv in the fit.

3. The SE rotational constants of the six isotopologues of the 4H2B monomer. (Table S7)

paramete r	A/MHz	<i>B</i> /MHz	C/MHz
Parent	7360.694(3)ª	2318.887(7)	1942.6359(5)
C1	7343.606(1)	2261.8911(2)	1902.0689(2)
C2	7359.329(1)	2310.1589(2)	1936.5533(2)
C3	7250.679(1)	2318.4206(2)	1934.4113(2)
C4	7309.146(1)	2293.1344(3)	1923.5726(3)
O6	7042.384(4)	2309.273(1)	1914.9297(9)

 Table S7 The SE rotational constants of the six isotopologues of the 4H2B monomer.

^aConstain's errors expressed in parentheses in units of the last digit.

4. The r_s , r^{SE} , r_e coordinates of the six isotopologues of the 4H2B monomer. (Table S8)

paramete r	a/Å			ramete a/Å b/Å			c/Å		
	rs	r ^{se}	r _e	rs	r ^{se}	r _e	rs	r ^{se}	r _e
C1	±2.341(6)ª	±2.340(6)	2.360	±0.318(5)	±0.336(4)	-0.316	±0.254(6)	±0.231(6)	-0.191
C2	±0.909(2)	±0.956(2)	0.919	±0.08(2)	±0.06(3)	0.087	±0.09(2)	±0.10(2)	0.026
C3	±0.070(2)	±0.233(6)	-0.118	±1.019(1)	±1.030(1)	-1.020	±0.05(3)	0.00 ^b	-0.045
C4	±1.507(1)	±1.511(1)	-1.497	±0.532(3)	±0.559(3)	-0.567	±0.427(4)	±0.426(4)	0.421
06	±0.614(3)	±0.626(2)	0.600	±1.233(1)	±1.235(1)	1.247	±0.296(5)	±0.260(6)	0.253

Table S8 The r_s , r^{sE} and r_e , coordinates of the five isotopologues of the 4H2B monomer.

^a Constain's errors expressed in parentheses in units of the last digit. ^b Imaginary values, fixed at zero.

5. The r_s , r^{SE} and r_e structural parameters of conformer I of the 4H2B monomer. (Table S9)

		SE	. h
	r _s	rs	r _e b
RC1C2	1.51(1)	1.524(8)	1.513
RC2C3	1.45(3)	1.58(2)	1.521
RC3C4	1.59(2) ^a	1.427(6)	1.529
RC2O6	1.25(3)	1.22(3)	1.216
∠C1C2C3	116(2)	119(1)	116.8
∠C2C3C4	111(2)	114(1)	113.5
∠C1C2O6	120(2)	120(2)	121.6
∠06C2C3	123(3)	120(2)	121.6

Table S9 The r_s , r^{SE} and r_e structural parameters of conformer I of the 4H2B monomer.

^a Numbers in parentheses are 1σ uncertainties in the last significant digit. ^bB3LYP-(GD3BJ)/6-311++G(d,p) level of theory.

6. Geometries of conformer I of the 4H2B monomer calculated at B3LYP-(GD3BJ)/6-311++G(d,p). (Table S10)

	Bond lengths/Å	Va	Valence angles/°		l Angles/°	
C1C2	1.51(1)ª	C1C2C3	116(2)	C1C2C3C4	170.6	
C2C3	1.45(3)ª	C2C3C4	111(2)	O6C2C3C4	-9.4	
C3C4	1.59(2) ^a	C1C2O6	120(2)	C2C3C4O5	64.9	
C2O6	1.25(3)ª	C2C3O6	123(3)			
C4O5	1.420	C3C4O5	112.5			
O6H7	2.219	O5H7O6	125.8			

Table S10 Ggeometries of conformer I of the 4H2B monomer calculated at B3LYP-(GD3BJ)/6-311++G(d,p).

^a Values of partial r_0 structure with errors expressed in parentheses in units of the last digit.

7. The measured transition frequencies v of the five isotopologues of the 4H2B-H₂O complex with quantum numbers and difference to calculated frequencies Δv in the fit. (Tables S11-S15)

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	∆v/kHz
202-101	А	5641.9787	2.3
	Ε	5641.8853	2.6
2 ₁₂ -1 ₁₁	A	5273.1612	5.9
	Ε	5274.9867	2.7
2 ₁₁ -1 ₁₀	A	6213.8507	1.9
11 10	Е	6212.1946	6.0
302-202	A	8236.8981	1.7
-03 -02	E	8236.5136	1.4
312-212	Ā	7851.8627	0.9
-13 -12	F	7852.5245	2.5
32.4	Ā	9248,7993	3.4
012 -11	F	9248 3801	9.8
3	Δ	8615 2344	1 2
522 221	F	8641 1444	6.8
32	Δ	8993 5592	3 3
521 220	F	8968 1224	3.9
1	<u>L</u>	10669 7/31	0.4
4 04- 3 03	F	10668 7579	6.1
4 _2	L	10278 5452	2.2
414-313	A F	10270 2820	5.2
4 2	L	10179.1161	5.5
413-312	A 5	12178.1101	5.5
4 2	E	11407 0200	1.5
423-322	A C	11407.0399	0.5
4 2	E	11413.2385	2.8
422-321	A	12222.5850	0.1
4 3	E	12216.9720	1.9
4 ₃₂ -3 ₃₁	A	11654.6253	0.3
	E	11686.5909	1.9
4 ₃₁ -3 ₃₀	A	11/36.39/8	4.6
	E	11705.0175	2.4
5 ₀₅ -4 ₀₄	A	13030.8428	0.6
	Ε	13028.3398	3.9
5 ₁₅ -4 ₁₄	A	12858.1690	2.8
	Ε	12860.3966	7.2
5 ₁₄ -4 ₁₃	A	14943.6601	1.4
	Е	14943.0882	8.4
5 ₂₄ -4 ₂₃	A	14133.8616	4.3
	Е	14135.6993	5.6
5 ₂₃ -4 ₂₂	A	15448.9023	0.5
	Ε	15447.5348	0.6
5 ₃₃ -4 ₃₂	A	14585.9709	7.4
	Ε	14625.8236	2.5
5 ₃₂ -4 ₃₁	A	14851.9588	7.7
	Ε	14813.0012	2.4
6 ₀₆ -5 ₀₅	A	15390.1228	3.7
	Ε	15383.6832	4.0
6 ₁₆ -5 ₁₅	A	15302.9224	1.6
	Ε	15309.0982	7.5
6 ₁₅ -5 ₁₄	A	17505.8430	3.3
	Ε	17504.7907	3.8
6 ₂₅ -5 ₂₄	A	16787.4848	6.7
	Е	16788.2226	7.6
6 ₂₄ -5 ₂₃	A	18572.7020	2.8
3	Е	18572.1687	1.0
707-606	A	17765.7447	5.7
	Е	17754.5605	0.2
717-616	Ā	17725.8361	4.2
- 17 - 10	E	17736.8111	3.8
220-111	Ā	10906.8370	1.3
-20 -11	F	10940 9496	1.8
313-203	Ā	8856.7476	0.2
- 10 - 02			

Table S11 The measured transition frequencies v of the 4H2B-H₂O complex with quantum numbers and difference to calculated frequencies Δv in the fit.

	Ε	8855.5663	5.5
$3_{22}-2_{11}$ $4_{04}-3_{13}$ $4_{14}-3_{03}$ $5_{05}-4_{14}$	A	12736.3485	2.5
	Ε	12722.6499	3.1
4 ₀₄ -3 ₁₃	A	10049.8936	9.6
	E	10049.7051	9.0
4 ₁₄ -3 ₀₃	А	10998.3947	8.7
	Ε	10998.4356	3.4
5 ₀₅ -4 ₁₄	A	12702.1911	7.8
	Ε	12698.6620	8.4
5 ₁₅ -4 ₀₄	A	13186.8206	3.8
	Е	13190.0743	3.6

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	∆v/kHz		
2 ₀₂ -1 ₀₁	Α	5495.2795	3.0		
	Ε	5495.1776	2.3		
2 ₁₁ -1 ₁₀	Α	6055.0623	13.1		
	Ε	6053.4261	1.6		
3 ₀₃ -2 ₀₂	А	8021.5611	△v/kHz 3.0 2.3 13.1 1.6 4.7 3.5 10.4 0.3 0.9 7.7 6.8 13.7 6.3 8.5 2.7 5.2 6.8 5.5 5.6 1.0 4.7 1.4 0.2 7.0 4.2 1.4		
	Ε	8021.1692	3.5		
3 ₁₃ -2 ₁₂	А	7644.8351	10.4		
	Ε	7645.4682	0.3		
3 ₁₂ -2 ₁₁	Α	9012.1039	0.9		
	Ε	9011.6773	7.7		
4 ₀₄ -3 ₀₃	Α	10389.2190	6.8		
	Ε	10388.2314	13.7		
4 ₁₄ -3 ₁₃	Α	10104.3992	6.3		
	Ε	10105.2025	8.5		
4 ₁₃ -3 ₁₂	A	11865.6893	2.7		
4 ₂₃ -3 ₂₂	Α	11111.0891	5.2		
	Ε	11117.1472	6.8		
4 ₂₂ -3 ₂₁	А	11909.5838	5.5		
	Ε	11904.0508	5.6		
5 ₀₅ -4 ₀₄	А	12686.7291	1.0		
	Ε	12684.2382	4.7		
5 ₁₅ -4 ₁₄	Α	12517.9001	2.7 5.2 6.8 5.5 5.6 1.0 4.7 1.4		
5 ₁₄ -4 ₁₃	Α	14558.8812	0.2		
	Ε	14558.3008	7.0		
5 ₂₄ -4 ₂₃	Α	13766.5158	4.2		
	Ε	13768.2928	1.4		
6 ₀₆ -5 ₀₅	Α	14982.5065	1.8		
	Ε	14976.1301	3.6		

Table S12 The measured transition frequencies v for the 4H2B-HOD complex with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	A	5593.1598	0.7
	Ε	5593.0566	2.8
2 ₁₁ -1 ₁₀	А	6167.8097	0.8
	Ε	6166.1189	9.4
3 ₀₃ -2 ₀₂	А	8160.0874	1.2
	Ε	8159.6797	2.9
3 ₁₃ -2 ₁₂	A	7779.4718	1.1
	Ε	7780.1448	3.0
3 ₁₂ -2 ₁₁	A	9178.1120	0.5
	Ε	9177.6741	1.0
3 ₂₂ -2 ₂₁	A	8545.0443	0.8
4 ₀₄ -3 ₀₃	A	10565.1007	2.7
	Ε	10564.0603	0.8
4 ₁₄ -3 ₁₃	A	10280.6701	5.3
	Ε	10281.5438	0.4
4 ₁₃ -3 ₁₂	А	12080.1258	8.9
	Ε	12079.7782	6.5
4 ₂₃ -3 ₂₂	А	11311.8308	3.9
	Ε	11318.0146	2.0
4 ₂₂ -3 ₂₁	A	12138.3399	1.9
5 ₀₅ -4 ₀₄	А	12901.0165	1.0
	Ε	12898.3477	2.7
5 ₁₅ -4 ₁₄	А	12734.6120	2.6
	Ε	12736.9872	0.6
5 ₁₄ -4 ₁₃	A	14814.4994	5.5
	Ε	14813.8888	0.1
6 ₀₆ -5 ₀₅	А	15236.8464	1.8
	Ε	15230.0114	0.6
6 ₁₆ -5 ₁₅	A	15153.9068	2.2

Table S13 The measured transition frequencies v for the 4H2B-DOH complex with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	<i>∆v/</i> kHz
2 ₀₂ -1 ₀₁	А	5450.8193	5.0
	Ε	5450.7276	7.7
2 ₁₁ -1 ₁₀	А	5995.9460	4.7
	Ε	5994.3068	3.0
3 ₀₃ -2 ₀₂	А	7965.2087	4.6
05 02	Ε	7964.8577	5.0
313-212	А	7587.0197	9.5
19 12	Ε	7587.6324	2.4
312-211	А	8927.5350	2.0
- 12 11	Ε	8927.1119	1.9
322-221	А	8317.3353	1.9
404-303	А	10323.6789	10.4
04 - 05	Ε	10322.7970	3.1
414-313	А	10031.3065	10.4
14 - 15	Ε	10032.0354	7.6
43	Δ	11762 1600	5 1
-13 512	F	11761 8495	6.7
4	Δ	11015 7512	1.2
-23 322	F	11013.7512	2 1
4	Δ	11780 3834	4 5
+22 3 21	F	11774 6082	2.8
4	Δ	11246 0769	2.0
-32 331	F	11275 3642	1 4
1	Δ	1127 3.3042	0.2
-31 330	F	11290 5238	9.6
5	Δ	12608 4795	8.1
J05 ⁻⁴ 04	F	12606.2934	0.7
54	Δ	12430 7300	8.9
315 -14	F	12432 6233	10.4
5 -1	2	1///6 1118	5 1
314 413	F	14445 5976	11 /
5	Δ	13653 7726	15
524-423	F	13655 6140	6.7
5 .4	L A	14896 4007	4.9
J ₂₃ -+22	A F	14890.4007	4.5
5	Δ	14075 9155	3.9
33-432	F	14075.5155	3.5
5	Δ	1/315 51/5	1 1
32-431	F	1/277 2529	0.4
65	Δ	1/888 2/15	3.7
006-005	F	14882 6269	1.7
65.	Δ	14796 2605	2.2
6 ₁₆ -5 ₁₅	A A	16030 4738	6.0
015-014	F	16938 5428	4 9
65-	Δ	16223 2000	4.5 9.6
U ₂₅ -J ₂₄	F	16224 0126	5.0 15 0
7 -6	Δ	17182 1561	13.Z Q 7
, ₀₇ -0 ₀₆	F	17173 7/03	<i>5.7</i>
4 -3	Δ	1/1/2./402 0686 1650	0.7
4 ₀₄ -3 ₁₃	A E	9000.1030	2.1
	E	9080.0554	0.0

Table S14 The measured transition frequencies v for the 4H2B-H₂¹⁸O complex with quantum numbers and difference to calculated frequencies Δv in the fit.

J''(ka' kc')-J''(ka'' kc'')	state	v/MHz	∆v/kHz
2 ₀₂ -1 ₀₁	Α	5450.1649	1.7
	Ε	5450.0561	5.7
3 ₀₃ -2 ₀₂	A	7951.2776	5.7
	Ε	7950.8683	2.8
3 ₁₃ -2 ₁₂	A	7578.4895	9.6
	Ε	7579.1332	1.7
3 ₁₂ -2 ₁₁	A	8945.6065	8.4
	Ε	8945.1678	14.5
4 ₀₄ -3 ₀₃	Α	10294.0636	5.1
	Ε	10293.0315	16.7
4 ₁₄ -3 ₁₃	Α	10014.9561	3.8
	Ε	10015.7925	9.1
4 ₁₃ -3 ₁₂	Α	11774.2131	10.2
	Ε	11773.8618	9.3
4 ₂₃ -3 ₂₂	А	11022.6591	3.2
	Ε	11028.7002	1.8
5 ₀₅ -4 ₀₄	A	12568.8878	6.1
	Ε	12566.2584	6.8
5 ₁₅ -4 ₁₄	Α	12405.2513	1.6
5 ₁₄ -4 ₁₃	Α	14439.5214	0.5
	Ε	14438.9140	4.9
5 ₂₄ -4 ₂₃	Α	13654.1978	14.0
	Ε	13655.9651	2.1
6 ₀₆ -5 ₀₅	A	14843.3657	6.5
	Ε	14836.6563	3.1
6 ₁₆ -5 ₁₅	A	14761.6375	0.8
	Ε	14768.0173	2.0

Table S15 The measured transition frequencies v for the 4H2B-D₂O complex with quantum numbers and difference to calculated frequencies Δv in the fit.

8. Geometries of isomer I of the 4H2B-H₂O complex calculated at B3LYP-GD3(BJ)/6-311++G(d,p). (Table S16)

Bond	lengths/Å	Valence a	angles/°	Dihedral	Angles/°	-
C1C2	1.511	C1C2C3	116.3	C1C2C3C4	-163.4	
C2C3	1.517	C2C3C4	115.4	C2C3C4O5	69.7	
C3C4	1.524	C3C4O5	111.0	C4O5O15O6	54.8(7)	
C2O6	1.218	0501506	70.6	O6C2C3C4	17.1	
C4O5	1.419	O5H7O6	94.0			
05015	2.827(4) ^a					
06015	3.02(2) ^a					
O6H7	3.019					

Table S16 Geometries of isomer I of the 4H2B-H₂O complex calculated at B3LYP-GD3(BJ)/6-311++G(d,p).

^a Values of partial r_0 structure with errors expressed in parentheses in units of the last digit.