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section
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A.1 Derivation of a1 and a2

We start from the following two equations in an open system:

∂θ

∂t
= [A]kd[H2O]

n{2Keq(eff)PCO2
(1− θ)− (2θ − 1)2} (S.A.1)

0 = [A]kd[H2O]
n{2Keq(eff)PCO2(eq)(1− θeq)− (2θeq − 1)2} (S.A.2)

Note that PCO2 = const. = PCO2(eq) in an open system. The subtraction of
these equations yields:

∂θ

∂t
= [A]kd[H2O]

n

[
(4− 2Keq(eff)PCO2)(θ − θeq)− 4(θ2 − θ2

eq)

]
(S.A.3)

= [A]kd[H2O]
n

[
− 4θ2 + θ(4− 2Keq(eff)PCO2

) + 4θ2
eq − (4− 2Keq(eff)PCO2

)θeq

]
(S.A.4)

≡ [A]kd[H2O]
n

[
a1(θ − θeq) + a2(θ − θeq)2

]
(S.A.5)

= [A]kd[H2O]
n

[
a2θ

2 + θ(a1 − 2a2θeq)− a1θeq + a2θ
2
eq

]
(S.A.6)

The comparison of the coefficients of the θ0, θ1 and θ2 terms yields:

a2 = −4 (S.A.7)

a1 − 2a2θeq = 4− 2Keq(eff)PCO2
(S.A.8)

−a1θeq + a2θ
2
eq = 4θ2

eq − (4− 2Keq(eff)PCO2
)θeq (S.A.9)

The value of a2 is expressed by Eq.(S.A.7). a1 can be derived by substituting
Eq.(S.A.7) into Eq.(S.A.8) as:

a1 = 4− 2Keq(eff)PCO2
− 8θeq (S.A.10)

We have obtained a1 and a2 without using Eq.(S.A.9). One can confirm that
Eq.(S.A.9) is automatically satisfied by substituting Eq.(S.A.7) and Eq.(S.A.10)
into Eq.(S.A.9). Solving the isotherm equation for Keq(eff)PCO2

results in

Keq(eff)PCO2
=

(2θeq − 1)2

2(1− θeq)
(S.A.11)

Substituting this equation into Eq.(S.A.10) yields:
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a1 = 4− �2
(2θeq − 1)2

�2(1− θeq)
− 8θeq (S.A.12)

= − (2θeq − 1)(3− 2θeq)

1− θeq
(S.A.13)

This expression indicates that a1 always takes a negative value in our Area
of Interest (0.5 < θeq < 1).
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A.2 Derivation of the rate laws

We assume that the following three chemical reactions are elementary reactions:

CO2(g)

kH−−−⇀↽−−−
k−H

CO2(AEM) (S.A.14)

CO2(AEM) + OH−(H2O)z

k1−−⇀↽−−−
k−1

HCO −
3 (H2O)x + n1H2O (S.A.15)

HCO −
3 (H2O)x + OH−(H2O)z + n2H2O

k2−−⇀↽−−−
k−2

CO 2−
3 (H2O)y (S.A.16)

We derive the rate laws in the following three possible cases, respectively.

Case I: The 1st reaction is the rate determining step

If the 1st reaction (Eq.(S.A.14)) is the slowest and the rate determining step,
the 2nd and the 3rd reactions are in quasi-equilibrium, namely,

[HCO−3 (H2O)x][H2O]n1

[CO2(aq)][OH−(H2O)z]
∼ K1 (S.A.17)

[CO2−
3 (H2O)y]

[HCO−3 (H2O)x][OH−(H2O)z][H2O]n2
∼ K2 (S.A.18)

Substituting these equations into the 1st reaction yields:

∂[DIC]

∂t
= −

∂[CO2(g)]

∂t
(S.A.19)

= kHPCO2 − k−H [CO2(aq)] (S.A.20)

= kHPCO2 − k−H
[HCO−3 (H2O)x][H2O]n1

K1[OH−(H2O)z]
(S.A.21)

= kHPCO2
− k−H

K2[HCO−3 (H2O)x]2[H2O]n

K1[CO2−
3 (H2O)y]

(S.A.22)

=
kH

[CO2−
3 (H2O)y]

{
PCO2

[CO2−
3 (H2O)y]− K2

K1KH
[HCO−3 (H2O)x]

2
[H2O]n

}
(S.A.23)

=
2[A]k−HK2[H2O]n

K1[CO2−
3 (H2O)y]

{
Keq(eff)PCO2 [CO2−

3 (H2O)y]− [HCO−3 (H2O)x]
2

2[A]

}
(S.A.24)
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Eq.(S.A.23) indicates that the overall reaction rate constants in Case I can
be expressed as:

ka(Case I) =
kH

[CO2−
3 (H2O)y]

(S.A.25)

kd(Case I) =
kH

[CO2−
3 (H2O)y]

(
K2(AEM)

K1(AEM)KH(AEM)

)
(S.A.26)

We can rewrite Eq.(S.A.23) in terms of θ as:

∂θ

∂t
=

[A]k−HK2[H2O]n

K1[CO2−
3 (H2O)y]

{
2Keq(eff)PCO2

[CO2−
3 (H2O)y]

[A]
− [HCO−3 (H2O)x]

2

[A]2

}
(S.A.27)

=
[A]k−HK2[H2O]n

K1[CO2−
3 (H2O)y]

{
2Keq(eff)PCO2(1− θ)− (2θ − 1)2

}
(S.A.28)

=
[A]k−HK2[H2O]n

K1[CO2−
3 (H2O)y]

[
a1(θ − θeq) + a2(θ − θeq)2

]
(S.A.29)

Note that we have the additional factor of 1/[CO2−
3 (H2O)y](= 1/{[A](1−θ)})

in the derived rate law (Eq.(S.A.29)) and the overall reaction rate constants
(Eq.(S.A.25) and Eq.(S.A.26)). A Taylor expansion of 1

1−θ around θ ∼ θeq

yields:

1

1− θ
=

1

1− θeq

1(
1− θ−θeq

1−θeq

) (S.A.30)

=
1

1− θeq

∞∑
n=0

(
θ − θeq

1− θeq

)n
(S.A.31)

Therefore, the additional factor of 1/[CO2−
3 (H2O)y] yields the higher order

terms in the rate law.

Case II: The 2nd reaction is the rate determining step

If the 2nd reaction (Eq.(S.A.15)) is the slowest and the rate determining
step, the 1st and the 3rd reactions are in quasi-equilibrium, namely,

[CO2(aq)]

PCO2

∼ KH (S.A.32)

[CO2−
3 (H2O)y]

[HCO−3 (H2O)x][OH−(H2O)z][H2O]n2
∼ K2 (S.A.33)
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Substituting these equations into the 2nd reaction yields:

∂[DIC]

∂t
= −

∂[CO2(aq)]

∂t
(S.A.34)

= k1[CO2(aq)][OH−(H2O)z]− k−1[HCO−3 (H2O)x][H2O]n1 (S.A.35)

= k1KHPCO2

[CO2−
3 (H2O)y]

K2[HCO−3 (H2O)x][H2O]n2
− k−1[HCO−3 (H2O)x][H2O]n1 (S.A.36)

=
k−1

[HCO−3 (H2O)x]

{
K1KH

K2[H2O]n2
PCO2

[CO2−
3 (H2O)y]− [HCO−3 (H2O)x]

2
[H2O]n1

}
(S.A.37)

=
k−1

[HCO−3 (H2O)x]

K1KH

K2[H2O]n2

{
PCO2

[CO2−
3 (H2O)y]− K2

K1KH
[HCO−3 (H2O)x]

2
[H2O]n

}
(S.A.38)

=
2[A]k−1[H2O]n1

[HCO−3 (H2O)x]

{
Keq(eff)PCO2 [CO2−

3 (H2O)y]− [HCO−3 (H2O)x]
2

2[A]

}
(S.A.39)

Eq.(S.A.38) indicates that the overall reaction rate constants in Case II can
be expressed as:

ka(Case II) =
k−1[H2O]−n2

[HCO−3 (H2O)x]

(
K1(AEM)KH(AEM)

K2(AEM)

)
(S.A.40)

kd(Case II) =
k−1[H2O]−n2

[HCO−3 (H2O)x]
(S.A.41)

We can rewrite Eq.(S.A.38) in terms of θ as:

∂θ

∂t
=

[A]k−1[H2O]n1

[HCO−3 (H2O)x]

{
2Keq(eff)PCO2

[CO2−
3 (H2O)y]

[A]
− [HCO−3 (H2O)x]

2

[A]2

}
(S.A.42)

=
[A]k−1[H2O]n1

[HCO−3 (H2O)x]

{
2Keq(eff)PCO2

(1− θ)− (2θ − 1)2

}
(S.A.43)

=
[A]k−1[H2O]n1

[HCO−3 (H2O)x]

[
a1(θ − θeq) + a2(θ − θeq)2

]
(S.A.44)

Note that we have the additional factor of 1/[HCO−3 (H2O)x](= 1/{[A](2θ−
1)}) in the derived rate law (Eq.(S.A.44)) and the overall reaction rate constants
(Eq.(S.A.40) and Eq.(S.A.41)). A Taylor expansion of 1

2θ−1 around θ ∼ θeq

yields:
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1

2θ − 1
=

1

2(θeq − 0.5)

1(
1− θ−θeq

0.5−θeq

) (S.A.45)

=
1

2(θeq − 0.5)

∞∑
n=0

(
θ − θeq

0.5− θeq

)n
(S.A.46)

Therefore, the additional factor of 1/[HCO−3 ] yields the higher order terms
in the rate law.

Case III: The 3rd reaction is the rate determining step

If the 3rd reaction (Eq.(S.A.16)) is the slowest and the rate determining
step, the 1st and the 2nd reactions are in quasi-equilibrium, namely,

[CO2(aq)]

PCO2

∼ KH (S.A.47)

[HCO−3 (H2O)x][H2O]n1

[CO2(aq)][OH−(H2O)z]
∼ K1 (S.A.48)

Substituting these equations into the 3rd reaction yields:

∂[DIC]

∂t
= −∂[CO2−

3 (H2O)y]

∂t
(S.A.49)

= −k2[HCO−3 (H2O)x][OH−(H2O)z][H2O]n2 + k−2[CO2−
3 (H2O)y]

(S.A.50)

= −k2[HCO−3 (H2O)x]
[HCO−3 (H2O)x][H2O]n

KHK1PCO2

+ k−2[CO2−
3 (H2O)y]

(S.A.51)

= k−2

{
[CO2−

3 (H2O)y]− K2[H2O]n

KHK1

[HCO−3 (H2O)x]
2

PCO2

}
(S.A.52)

=
k−2

PCO2

{
PCO2

[CO2−
3 (H2O)y]− K2

KHK1
[HCO−3 (H2O)x]

2
[H2O]n

}
(S.A.53)

=
2[A]k2[H2O]n

KHK1PCO2

{
Keq(eff)PCO2 [CO2−

3 (H2O)y]− [HCO−3 (H2O)x]
2

2[A]

}
(S.A.54)

Eq.(S.A.53) indicates that the overall reaction rate constants in Case III can
be expressed as:
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ka(Case III) =
k−2

PCO2

(S.A.55)

kd(Case III) =
k−2

PCO2

(
K2(AEM)

K1(AEM)KH(AEM)

)
(S.A.56)

We can rewrite Eq.(S.A.53) in terms of θ as:

∂θ

∂t
=

[A]k2[H2O]n

KHK1PCO2

{
2Keq(eff)PCO2

[CO2−
3 (H2O)y]

[A]
− [HCO−3 (H2O)x]

2

[A]2

}
(S.A.57)

=
[A]k2[H2O]n

KHK1PCO2

{
2Keq(eff)PCO2

(1− θ)− (2θ − 1)2

}
(S.A.58)

=
[A]k2[H2O]n

KHK1PCO2

[
a1(θ − θeq) + a2(θ − θeq)2

]
(S.A.59)

Note that we have the additional factor of 1/PCO2
in the derived rate

law (Eq.(S.A.59)) and the overall reaction rate constants (Eq.(S.A.55) and
Eq.(S.A.56)).
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A.3 Derivation of the kinetics equations for a
closed system

We start from the following two equations:

∂θ

∂t
= [A]kd[H2O]

n{2Keq(eff)PCO2
(1− θ)− (2θ − 1)2} (S.A.60)

0 = [A]kd[H2O]
n{2Keq(eff)PCO2(eq)(1− θeq)− (2θeq − 1)2}(S.A.61)

Subtracting the latter equation from the former equation yields:

∂θ

∂t
= [A]kd[H2O]

n

×
[
θ2(−4 + 2Keq(eff)PAEM) + θ

{
4− 2Keq(eff)(P

∗ + PAEM)

}
+

{
− 1 + 2Keq(eff)P

∗ − 2Keq(eff)Peq(1− θeq) + (2θeq − 1)2

}]
(S.A.62)

Note that we introduced PCO2 = P ∗ − P ∗AEMθ. We compare Eq.(S.A.62)
with the following form:

∂θ

∂t
= [A]kd[H2O]

n

{
a′1(θ − θeq) + a′2(θ − θeq)2

}
(S.A.63)

= [A]kd[H2O]
n

{
a′2θ

2 + θ(a′1 − 2a′2θeq)− a′1θeq + a′2θ
2
eq

}
(S.A.64)

In order to make the coefficients of the θ2, θ1 and θ0 terms in Eq.(S.A.62)
and Eq.(S.A.64) equivalent, the following equations need to be satisfied:

a′2 = 2Keq(eff)P
∗
AEM − 4 (S.A.65)

a′1 − 2a′2θeq = 4− 2Keq(eff)(P
∗ + P ∗AEM) (S.A.66)

−a′1θeq + a′2θ
2
eq = −1 + 2Keq(eff)P

∗ − 2Keq(eff)Peq(1− θeq) + (2θeq − 1)2

(S.A.67)

Substituting Eq.(S.A.65) into Eq.(S.A.66) yields:

a′1 = 2(2θeq − 1)(Keq(eff)P
∗
AEM − 2)− 2Keq(eff)P

∗ (S.A.68)

We have obtained a′1 and a′2 without using Eq.(S.A.67). One can confirm
that Eq.(S.A.67) is automatically satisfied if Eq.(S.A.65) and Eq.(S.A.68) are
substituted into Eq.(S.A.67).
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B.1 Derivation of the non-linear diffusion equa-
tion for carbon transport

In this Chapter, we refer to HCO−3 and CO2−
3 as C and D for convenience,

respectively. Ci[mol/L], Di[m
2/s], zi[non dim.] represents concentration, diffu-

sivity and charge of each chemical species respectively. km and k−m represents
a forward or backward reaction rate constant of m-th chemical reaction respec-
tively. Note that we ignore convection terms.

Now, we consider the following chemical reactions inside a sorbent:

CO2(AEM) + OH−(H2O)z

k1−−⇀↽−−−
k−1

HCO −
3 (H2O)x + n1H2O (S.B.1)

HCO −
3 (H2O)x + OH−(H2O)z + n2H2O

k2−−⇀↽−−−
k−2

CO 2−
3 (H2O)y (S.B.2)

where,

n1 ≡ z − x (S.B.3)

n2 ≡ y − 1− x− z (S.B.4)

(S.B.5)

x, y and z represent the hydration number of bicarbonate ions, carbonate
ions and hydroxide ions, respectively. The time-dependent behavior of each
chemical species’ concentration in an anion exchange material can be described
by the following Nernst-Planck time-dependent PDEs including diffusion terms

(−
−→
∇ ·

(
−Di
−→
∇Ci

)
), chemical reaction terms (Si1 + Si2 + · · · ) and migration

current terms (−
−→
∇ ·

(
zi(CEDE)

−→
E
)

):

∂Ci
∂t

= −
−→
∇ ·

(
−Di
−→
∇Ci

)
︸ ︷︷ ︸

diffusion term

+ Si1 + Si2 + · · ·+ SiN︸ ︷︷ ︸
chemical reaction kinetics term

−
−→
∇ ·

(
zi(CiDi)

−→
E
)

︸ ︷︷ ︸
migration term

(S.B.6)

where,

−→
E ≡

∑
i ziDi

−→
∇Ci∑

i z
2
iDiCi

(S.B.7)

Sim denotes a generated or consumed amount of the chemical species i in
the m-th chemical reaction. We ignore only H+ but take CO2 and OH− into
consideration at first. The three PDEs that are relevant to DIC can be expressed
as
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∂CCO2

∂t
=
−→
∇ ·

(
DCO2

−→
∇CCO2

)
−k1CCO2COH− + k−1CHCO−

3
Cn1

H2O (S.B.8)

∂CHCO−
3

∂t
=
−→
∇ ·

(
DHCO−

3

−→
∇CHCO−

3

)
+
−→
∇ ·

(
CHCO−

3
DHCO−

3

−→
E
)

+k1CCO2
COH− − k−1CHCO−

3
Cn1

H2O

−k2CHCO−
3
COH−Cn2

H2O + k−2CCO2−
3

(S.B.9)

∂CCO2−
3

∂t
=
−→
∇ ·

(
DCO2−

3

−→
∇CCO2−

3

)
+
−→
∇ ·

(
2CCO2−

3
DCO2−

3

−→
E
)

+k2CHCO−
3
COH−Cn2

H2O − k−2CCO2−
3

(S.B.10)

where,

−→
E =

−DOH−
−→
∇COH− −DHCO−

3

−→
∇CHCO−

3
− 2DCO2−

3

−→
∇CCO2−

3
+DH+

−→
∇CH+

DOH−COH− +DHCO−
3
CHCO−

3
+ 4DCO2−

3
CCO2−

3
+DH+CH+

(S.B.11)

∼
−DOH−

−→
∇COH− −DHCO−

3

−→
∇CHCO−

3
− 2DCO2−

3

−→
∇CCO2−

3

DOH−COH− +DHCO−
3
CHCO−

3
+ 4DCO2−

3
CCO2−

3

(S.B.12)

Now, we translate CHCO−
3

and CCO2−
3

into COH− , [DICI] and [A] using charge

neutrality:

CHCO−
3

+ 2CCO2−
3

+ COH− = [A] + CH+ (S.B.13)

∼ [A] (S.B.14)

Namely,

[HCO−3 ] = 2[DICI] + [OH−]− [A] (S.B.15)

[CO2−
3 ] = [A]− [DICI]− [OH−] (S.B.16)
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Substituting these two relations into the combined PDE obtained from Eq.(S.B.8),
Eq.(S.B.9) and Eq.(S.B.10) yields:

∂[DIC]

∂t
= −

−→
∇ · (

−→
J DIC(diff) +

−→
J DIC(mig)) (S.B.17)

where,

−→
J DIC(diff) = −DCO2

−→
∇[CO2]−DHCO−

3

−→
∇[HCO−3 ]−DCO2−

3

−→
∇ [CO2−

3 ]

(S.B.18)

= −DCO2

−→
∇[CO2]

−DHCO−
3

−→
∇(2[DICI] + [OH−]− [A])

−DCO2−
3

−→
∇([A]− [DICI]− [OH−]) (S.B.19)

= −DCO2

−→
∇[CO2]

−(2DHCO−
3
−DCO2−

3
)
−→
∇[DICI]

−(DHCO−
3
−DCO2−

3
)
−→
∇ [OH−] (S.B.20)

−→
J DIC(mig)

= −(DHCO−
3

[HCO−3 ] + 2DCO2−
3

[CO2−
3 ])×

−→
E (S.B.21)

=

[
− 2

[DICI]

[A]
(DHCO−

3
−DCO2−

3
)− [OH−]

[A]
(DHCO−

3
− 2DCO2−

3
) +DHCO−

3
− 2DCO2−

3

]

×
(2DCO2−

3
−DHCO−

3
−DOH−)

−→
∇[OH−] + 2(DCO2−

3
−DHCO−

3
)
−→
∇[DICI]

[DICI]
[A] (2DHCO−

3
− 4DCO2−

3
) + [OH−]

[A] (DOH− +DHCO−
3
− 4DCO2−

3
)−DHCO−

3
+ 4DCO2−

3

(S.B.22)

When [CO2] and [OH−] can be regarded as negligible compared to [DIC],
the PDE simplifies to:
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[A]
∂θ

∂t
∼
−→
∇ ·

(
DC
−→
∇CC

)
+
−→
∇ ·

(
DD
−→
∇CD

)

+
−→
∇ ·

(DCCC + 2DDCD)× −DC
−→
∇CC − 2DD

−→
∇CD

DCCC + 4DDCD︸ ︷︷ ︸
=
−→
E

 (S.B.23)

= [A]
−→
∇ ·

(
(2DC −DD)

−→
∇θ
)

+[A]
−→
∇ ·

{2θ(DC −DD)− (DC − 2DD)} × −2(DC −DD)
−→
∇θ

2θ(DC − 2DD)− (DC − 4DD)︸ ︷︷ ︸
=
−→
E

 (S.B.24)

= [A]
−→
∇ ·

(
(2DC −DD)

−→
∇θ
)

+[A]
−→
∇ ·

(
−2(DC −DD)

−→
∇θ × 2θ(DC −DD)− (DC − 2DD)

2θ(DC − 2DD)− (DC − 4DD)

)
(S.B.25)

= [A]
−→
∇ ·

[(−→
∇θ
)( 1

2θ(DC − 2DD)− (DC − 4DD)

)
×
{

2θ(2DC −DD)(DC − 2DD)− (2DC −DD)(DC − 4DD)

−4θ(DC −DD)2 + 2(DC −DD)(DC − 2DD)

}]
(S.B.26)

= [A]
−→
∇ ·

[(−→
∇θ
) DCDD(3− 2θ)

2θ(DC − 2DD)− (DC − 4DD)

]
(S.B.27)

= [A]
−→
∇ ·

[(−→
∇θ
)( 1

2θ(DC − 2DD)− (DC − 4DD)

)
×
{

[2θ(DC − 2DD)− (DC − 4DD)]× −2DCDD

2(DC − 2DD)

−2(DC − 4DD)

2(Dc − 2DD)
DCDD + 3DCDD

}]
(S.B.28)

= [A]
−→
∇ ·

[(−→
∇θ
){ −�2DCDD

�2(DC − 2DD)
+
− 2(DC−4DD)

2(DC−2DD)DCDD + 3DCDD

2θ(DC − 2DD)− (DC − 4DD)

}]
(S.B.29)

= [A]
−→
∇ ·

[(−→
∇θ
)
DCDD

{
−1

DC − 2DD
+

4(DC−DD)
2(DC−2DD)

2θ(DC − 2DD)− (DC − 4DD)

}]
(S.B.30)

= [A]
−→
∇ ·

[(
DCDD

DC − 2DD

)(
−1 +

2(DC −DD)

2θ(DC − 2DD)− (DC − 4DD)

)(−→
∇θ
)]

(S.B.31)

=−[A]
−→
∇ ·

(
−Deff

−→
∇θ
)

(S.B.32)
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where,

Deff ≡
(

DCDD

DC − 2DD

)(
−1 +

2(DC −DD)

2θ(DC − 2DD)− (DC − 4DD)

)
(S.B.33)

We can confirm that the effective diffusivity (Deff) satisfies the following
relations:

Deff(θ = 0.5) = DHCO−
3

(S.B.34)

Deff(θ = 1) = DCO2−
3

(S.B.35)

These relations can be also confirmed in terms of diffusion flux and migration

flux. The diffusion flux
−→
J diff can be expressed as:

−→
J diff = −DC

−→
∇CC −DD

−→
∇CD (S.B.36)

= −(2DC −DD)
−→
∇θ (S.B.37)

Therefore, diffusion current
−→
I diff can be expressed as:

−→
I diff = −F (2zCDC − zDDD)

−→
∇θ (S.B.38)

= 2F (DC −DD)
−→
∇θ (S.B.39)

On the other hand,
−→
E can be written as:

−→
E =

2(DD −DC)

DC(2θ − 1) + 4DD(1− θ)
−→
∇θ (S.B.40)

Therefore, migration flux
−→
J mig can be decomposed as:

−→
J mig =

−→
J C(mig) +

−→
J D(mig) (S.B.41)

= ZCDCCC
−→
E + ZDDDCD

−→
E (S.B.42)

= −DCCC
2(DD −DC)

DC(2θ − 1) + 4DD(1− θ)
−→
∇θ

−2DDCD
2(DD −DC)

DC(2θ − 1) + 4DD(1− θ)
−→
∇θ (S.B.43)

= −DC(2θ − 1)
2(DD −DC)

DC(2θ − 1) + 4DD(1− θ)
−→
∇θ

−2DD(1− θ) 2(DD −DC)

DC(2θ − 1) + 4DD(1− θ)
−→
∇θ (S.B.44)
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Hence, migration current
−→
I mig can be expressed as

−→
I mig = FZC

−→
J C(mig) + FZD

−→
J D(mig) (S.B.45)

= FDC(2θ − 1)
2(DD −DC)

DC(2θ − 1) + 4FDD(1− θ)
−→
∇θ

+4FDD(1− θ) 2(DD −DC)

DC(2θ − 1) + 4FDD(1− θ)
−→
∇θ (S.B.46)

= 2F (DD −DC)
−→
∇θ (S.B.47)

= −
−→
I diff (S.B.48)

It confirms that the condition of null current is satisfied. We consider the
two spacial cases: θ = 0.5 and θ = 1. Substituting these values into Eq.(S.B.37)
and Eq.(S.B.44) yields:

−→
J mig(θ = 0.5) =

−→
J D(mig)(θ = 0.5) (S.B.49)

= (−DD +DC)
−→
∇θ (S.B.50)

−→
J diff(θ = 0.5) = (−2DC +DD)

−→
∇θ (S.B.51)

−→
J mig(θ = 1) =

−→
J C(mig)(θ = 1) (S.B.52)

= (−2DD + 2DC)
−→
∇θ (S.B.53)

−→
J diff(θ = 1) = (−2DC +DD)

−→
∇θ (S.B.54)

Thus,

−→
J diff +

−→
J mig =

{
−DC

−→
∇θ (if θ = 0.5)

−DD
−→
∇θ (if θ = 1)

(S.B.55)

Hence,

Deff =

{
DC (if θ = 0.5)
DD (if θ = 1)

(S.B.56)
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B.2 Analytic solutions of a linear diffusion equa-
tion with a constant diffusivity for a flat
sheet

We imagine that the normalized concentration of the sorbate per unit area,
θ(x, t) (0 < θ < 1). At time t < 0, the concentration inside a flat-sheet sorbent
is uniformly distributed, i.e., θ(x, t < 0) = θini. At t = 0, only the surface
concentration suddenly changes from θini to θ(x = 0, t) = θ(x = L, t) = θeq. The
time-development of the concentration θ(x, t) inside the flat sheet after t > 0 can
be described by the following Partial Differential Equations (PDE) regarding the
concentration θ(x, t), boundary conditions and an initial condition:

∂θ

∂t
= D

∂2c

∂x2
(S.B.57)

θ(0, t) = θeq (S.B.58)

θ(L, t) = θeq (S.B.59)

θ(x, 0) = P (x) (S.B.60)

where, L is the thickness of the flat sheet and D is the diffusivity of the
sorbate inside the flat sheet. P (x) is the initial distribution of the concentration
defined as:

P (x) =

{
θeq (if x = 0, L)
θini (if 0 < x < L)

(S.B.61)

This is a homogeneous PDE with non-homogeneous boundary conditions.
The steady state is obviously θ(x, t)|steady = θ(x, t =∞) = θeq. So, if we define

θ̃ as

θ(x, t) ≡ θ̃(x, t) + θ(x, t)|steady (S.B.62)

= θ̃(x, t) + θeq (S.B.63)

then the system can be rewritten as

∂θ̃

∂t
= D

∂2θ̃

∂x2
(S.B.64)

θ̃(0, t) = 0 (S.B.65)

θ̃(L, t) = 0 (S.B.66)

θ̃(x, 0) = P̃ (x) (S.B.67)

P̃ (x) is the rewritten initial distribution of the concentration defined as:
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P̃ (x) =

{
0 (if x = 0, L)
−(θeq − θini) (if 0 < x < L)

(S.B.68)

This rewritten system is a homogeneous PDE with homogeneous bound-
ary conditions, so this system can be solved by the method of Separation of
Variables. We define h(t) and φ(x) as:

θ̃(x, t) ≡ h(t)φ(x) (S.B.69)

Then, we can define a constant number λ that is independent of both x and
t as:

−λ ≡ 1

D

1

h(t)

dh(t)

dt
=

1

φ(x)

d2φ(x)

dx2
(S.B.70)

We obtain the following two Ordinary Differential Equations (ODE):

d2φ(x)

dt2
= −λφ(x) (S.B.71)

dh(t)

dt
= −λDh(t) (S.B.72)

We solve Eq.(S.B.71) first. In cased of λ = 0, Eq.(S.B.71) reduces to

d2φ(x)

dt2
= 0 (S.B.73)

The general solutions can be expressed using some coefficients A and B as:

φ(x) = Ax+B (S.B.74)

However, the boundary conditions demand A = B = 0, which results in a
trivial solution.

In cased of λ > 0, the general solutions of Eq.(S.B.71) are:

φ(x) = A sin(
√
λx) +B cos(

√
λx) (S.B.75)

The boundary conditions demand:

Bh(t) = 0 (S.B.76)

(A sin(
√
λL) +B cos(

√
λL))h(t) = 0 (S.B.77)
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Thus

B = 0 (S.B.78)

λ =
(nπ
L

)2

(n = 1, 2, 3, · · · ) (S.B.79)

Therefore we obtain multiple discrete solutions:

φn(x) = an sin
(nπ
L
x
)

(S.B.80)

where, an is coefficients that need to be determined to satisfy the initial condi-
tion.

In cased of λ < 0, the general solutions of Eq.(S.B.71) are:

φ(x) = A sinh(
√
−λx) +B cosh(

√
−λx) (S.B.81)

The boundary conditions demand:

Bh(t) = 0 (S.B.82)

(A sinh(
√
−λL) +B cosh(

√
−λL))h(t) = 0 (S.B.83)

This results in A = B = 0, which indicates a trivial solution. After all,
Eq.(S.B.80) is only the solutions for Eq.(S.B.71).

Next, we solve Eq.(S.B.72). Substituting Eq.(S.B.79) into Eq.(S.B.72) yields:

dh(t)

dt
= −D

(nπ
L

)2

h(t) (S.B.84)

We obtain multiple discrete solutions for h(t):

hn(t) = Ae−D(nπL )
2
t (n = 1, 2, 3, · · · ) (S.B.85)

So, θ̃ has the following multiple discrete solutions:

θ̃n(x, t) = an sin
(nπ
L
x
)
e−D(nπL )

2
t (n = 1, 2, 3, · · · ) (S.B.86)

So, the general solution can be expressed as:

θ̃(x, t) =

∞∑
n=1

an sin
(nπ
L
x
)
e−D(nπL )

2
t (S.B.87)
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The initial condition demands:

θ̃(x, t = 0) =

∞∑
n=1

an sin
(nπ
L
x
)

(S.B.88)

= P̃ (x) (S.B.89)

So,

∞∑
k=1

ak

∫ L

0

sin

(
kπ

L
x

)
sin
(nπ
L
x
)

dx =

∫ L

0

P̃ (x) sin
(nπ
L
x
)

dx

(S.B.90)

Note that:

∫ L

0

sin2
(nπ
L
x
)

dx =

∫ L

0

1− cos
(

2nπ
L x

)
2

dx (S.B.91)

=
L

2
− 1

2

∫ L

0

cos

(
2nπ

L
x

)
dx (S.B.92)

=
L

2
− 1

2

(
L

2πn

)[
sin

(
2nπ

L
x

)]L
0

(S.B.93)

=
L

2
(S.B.94)

and

∫ L

0

sin

(
kπ

L
x

)
sin
(nπ
L
x
)

dx = 0 (for n 6= k) (S.B.95)

Thus

an =
2

L

∫ L

0

P̃ (x) sin
(nπ
L
x
)

dx (S.B.96)

=
2

L
(θini − θeq)

∫ L

0

sin
(nπ
L
x
)

dx (S.B.97)

= − 2

�L
(θini − θeq)

(
�L

nπ

)[
cos
(nπ
L
x
)]L

0

(S.B.98)

=
2(θeq − θini)

nπ
{(−1)n − 1} (S.B.99)

(S.B.100)
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Therefore

θ̃(x, t) =

∞∑
n=1

2(θeq − θini)

nπ
{(−1)n − 1} sin

(nπ
L
x
)
e−D(nπL )

2
t (S.B.101)

θ(x, t) = θeq +

∞∑
n=1

2(θeq − θini)

nπ
{(−1)n − 1} sin

(nπ
L
x
)
e−D(nπL )

2
t

(S.B.102)

We define the total saturation in a sorbent 〈θ〉 as:

〈θ〉(t) ≡ 1

L

∫ L

0

θ(x, t)dx (S.B.103)

=
1

L

∫ L

0

(
θeq + θ̃(x, t)dx

)
(S.B.104)

= θeq +
1

L

∫ L

0

θ̃(x, t)dx (S.B.105)

= θeq +
1

L

∞∑
n=1

an

∫ L

0

sin
(nπ
L
x
)
e−D(nπL )

2
tdx (S.B.106)

= θeq −
1

�L

∞∑
n=1

an

[(
�L

nπ

)
cos
(nπ
L
x
)
e−D(nπL )

2
t

]L
0

(S.B.107)

= θeq −
∞∑
n=1

an

(
1

nπ

)
{(−1)n − 1}e−D(nπL )

2
t (S.B.108)

= θeq −
∞∑
n=1

2(θeq − θini)

(nπ)2
{(−1)n − 1}2e−D(nπL )

2
t (S.B.109)

= θeq − 8(θeq − θini)

×
[

1

1 · π2
e−D( 1·π

L )
2
t +

1

9 · π2
e−D( 3·π

L )
2
t +

1

25 · π2
e−D( 5·π

L )
2
t + · · ·

]
(S.B.110)

Therefore,

〈θ〉 − θeq

θini − θeq
= 8×

[
1

1 · π2
e−D( 1·π

L )
2
t +

1

9 · π2
e−D( 3·π

L )
2
t +

1

25 · π2
e−D( 5·π

L )
2
t + · · ·

]
(S.B.111)

Fig.(B.1) and Fig.(B.2) compare the 1st term of Eq.(S.B.111) and the sum-
mation including higher order terms, assuming D = 7 × 10−14 m2 s−1 and
L = 50 µm. These plots show that the 1st term approximation is valid after
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Figure B.1: Compare the 1st order approximation of Eq.(S.B.111) and the sum-
mation including higher order terms up to the 50th non-zero term, assuming
D = 7× 10−14 m2 s−1 and L = 50 µm.
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Figure B.2: The comparison of Eq.(S.B.111) with a different number of orders
at 0 < t < 30 [min].
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a half of the loading or unloading is achieved, in other words, t & T1/2. This
characteristic time T1/2 can be defined as

〈θ(t = T1/2)〉 − θeq

θini − θeq
=

1

2
(S.B.112)

Solving this equation for T1/2 using the 1st order approximation results in:

T1/2 =
1

D

(
L

π

)2

ln

[
16

π2

]
(S.B.113)

In case of D = 7× 10−14 m2 s−1 and L = 50 µm, we obtain

T1/2 = 29.1 minutes (S.B.114)

After this time, the 1st order approximation is valid. Namely,

〈θ〉 − θeq

θini − θeq
∼ 8

π2
e−D( πL )

2
t (S.B.115)

Thus,

ln

[
〈θ〉 − θeq

θini − θeq

]
∼ −D

(π
L

)2

t− ln

[
π2

8

]
(S.B.116)

Therefore,

∂

∂t
ln

[
〈θ〉 − θeq

θini − θeq

]
∼ −D

(π
L

)2

t (S.B.117)

Integrating the original diffusion equation (Eq.(S.B.57)) by x yields:

[A]

∫ L

0

∂θ(x, t)

∂t
dx = −

∫ L

0

∂J(x, t)

∂x
dx (S.B.118)

(S.B.119)

where, J(x, t) denotes diffusion flux. Hence,

[A]
∂

∂t

∫ L

0

θ(x, t)dx = [A]L
∂

∂t
〈θ〉 (S.B.120)

= J(x = 0, t)− J(x = L, t) (S.B.121)

= 2J(x = 0, t) (S.B.122)

= −2J(x = L, t) (S.B.123)
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Note that we used the relation J(x = 0, t) = −J(x = L, t) that results from
the symmetry of our system. If we want to define the sorption flux as positive,
the total transient flux Jtrans can be defined as Jtrans ≡ J(x = 0, t). We can
also define the desorption flux as positive by defining as Jtrans ≡ J(x = L, t).
In this paper, we define the sign of Jtrans in a way where the desorption flux is
expressed as positive. Therefore,

[A]L
∂

∂t
〈θ〉 = −2Jtrans(t) (S.B.124)

Substituting Eq.(S.B.115) into Eq.(S.B.124) yields:

Jtrans(t) = − [A]L

2

∂

∂t

[
(θini − θeq)

4

π2
e−D( πL )

2
t

]
(S.B.125)

= [A]
4D

L
(θini − θeq)e−D( πL )

2
t (S.B.126)

= [A]
4D

L
∆θtranse

−D( πL )
2
t (S.B.127)

where,

∆θtrans ≡ θini − θeq (S.B.128)

The sign of Eq.(Eq.S.B.126) confirms that Jtrans(t) is positive (i.e., desorp-
tion flux occurs) when θini > θeq while Jtrans(t) is negative (i.e., sorption flux
occurs) when θini < θeq.

The subscript trans means that this flux is caused by the transition of the
surrounding environment and is time-dependent. The transient flux at t =

T1/2 = 1
D

(
L
π

)2
ln
[

16
π2

]
is:

JtransT1/2
= [A]

D

L

π2

4
∆θtrans (S.B.129)

By contrast, if the concentration gradient ∆θpump is kept across the flat
sheet, there should be a time-independent steady continuous flux from one side
to the other, Jpump:

Jpump = [A]
D

L
∆θpump (S.B.130)

where,

∆θpump ≡ θ(x = 0)− θ(x = L) (S.B.131)
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Therefore, there is the following relation between Jtrans and Jpump:

Jpump ∼
(

4

π2

)(
∆θpump

∆θtrans

)
Jtrans T1/2

(S.B.132)
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B.3 Analytic solution for a dynamic steady-state

We can derive an analytic solution for Eq.(S.B.32) in a dynamic steady-state in
case we can regard DC and DD as a constant. In a steady-state, Eq.(S.B.32)
can be transformed into the following 2nd-order ODE:

0 = − d

dx

(
−Deff(θ)

dθ

dx

)
(S.B.133)

Integrating this 2nd-order ODE by x once yields:

c1 = Deff(θ)

(
dθ

dx

)
(S.B.134)

Or,

c1 =
DCDD

DC − 2DD

(
−1 +

2(DC −DD)

2θ(DC −DD)− (DC − 4DD)

)(
dθ

dx

)
(S.B.135)

where, c1 is the constant of integration. Note that c1 has a physical meaning as
the total carbon flux Jcarbon normalized by −[A], namely:

Jcarbon = −c1[A] (S.B.136)

Now, Eq.(S.B.135) can be rearranged into:

dθ

(
−1 +

2(DC −DD)

2θ(DC − 2DD)− (DC − 4DD)

)
= dx

(
c1(DC − 2DD)

DCDD

)
(S.B.137)

Integrating this 1st-order ODE yields:

−θ +
DC −DD

DC − 2DD
× ln [2θ(DC − 2DD)− (DC − 4DD)] =

c1x(DC − 2DD)

DCDD
+ c2

(S.B.138)

where, c2 is the constant of integration. These constants c1 and c2 can be
expressed using the boundary conditions. Now, we consider the following bound-
ary conditions determined by Keq(eff) (or relative humidity, RH) and PCO2

:

θ(x = 0) = θeq

(
PCO2

(x = 0);Keq(eff)(RH(x = 0))
)

(S.B.139)

≡ θ0 (S.B.140)

θ(x = L) = θeq

(
PCO2

(x = L);Keq(eff)(RH(x = L))
)

(S.B.141)

≡ θL (S.B.142)
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Then, C1 and C2 can be derived as:

c1 =
DCDD

L(DC − 2DD)
{−(θL − θ0)

+
DC −DD

DC − 2DD
× ln

[
2θL(DC − 2DD)− (DC − 4DD)

2θ0(DC − 2DD)− (DC − 4DD)

]
}

(S.B.143)

c2 = −θ0 +
DC −DD

DC − 2DD
× ln [2θ0(DC − 2DD)− (DC − 4DD)]

(S.B.144)

Substituting these expressions of A and B into Eq.(S.B.138) yields:

−(θ − θ0) +
DC −DD

DC − 2DD
× ln

[
2θ(DC − 2DD)− (DC − 4DD)

2θ0(DC − 2DD)− (DC − 4DD)

]
=
x

L
{−(θL − θ0) +

DC −DD

DC − 2DD
× ln

[
2θL(DC − 2DD)− (DC − 4DD)

2θ0(DC − 2DD)− (DC − 4DD)

]
}

(S.B.145)

This is the analytic solution for θ in a dynamic steady-state. The continuous
CO2 pumping flux Jpump can be expressed as:

Jpump(DC , DD) = −c1[A] (S.B.146)

= − DCDD

L(DC − 2DD)
[A]{−(θL − θ0)

+
DC −DD

DC − 2DD
× ln

[
2θL(DC − 2DD)− (DC − 4DD)

2θ0(DC − 2DD)− (DC − 4DD)

]
}

(S.B.147)

This is the analytic expression for Jpump.
Note that, in case of DC ∼ DD(≡ D), then, Eq.(S.B.145) results in:

θ − θ0

θL − θ0
=

x

L
(S.B.148)

This is just a straight line, which is the solution for the linear diffusion
equation in a steady state. In this case, the CO2 pumping flux Jpump can be
approximated to:

Jpump(DC ∼ DD(≡ D)) = −D
(
θL − θ0

L

)
[A] (S.B.149)
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Figure B.3: Jpump ( or the CO2 pumping flux) assuming DHCO−
3

= 1 ×
10−12 m2 s−1, L = 50 µm and [A] = 2 mmol cm−3.

Fig.(B.3) shows the calculated Jpump against m ≡ DCO2−
3
/DHCO−

3
based on

Eq.(S.B.147), assuming DHCO−
3

= 1 × 10−12 m2 s−1, L = 50 µm and [A] =

2 mmol cm−3. This plot describes how the amplitude of a continuous CO2

pumping flux is hampered when the diffusivity of CO2−
3 is smaller than HCO−3 .

For example, this plot suggests that if DHCO−
3

is ∼ 1 × 10−12 m2 s−1 and

(θ0, θL) = (1, 0.75), an expected amplitude of Jpump ranges from 6.3 to 10.0
µmol m−2 s−1 for a membrane with thickness of 50 µm as long as 0.5 < m < 1.

In case that the changes in DHCO−
3

and DCO2−
3

depending on the water

uptake in the AEM are not negligible, one needs to solve the first-order ODE
(Eq.(S.B.137)) numerically.
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sorbent

xx = Lx = 0

Pw = const.Pw = const.

[H2O](x=0) = PwKHw(x=0)

KHw(x) KHw(x) spatially changes 
inside a sorbent.

[H2O](x=L) = PwKHw(x=L)

Figure B.4: A graphical explanation of a one-dimensional system where an
equilibrium constant spatially changes inside a sorbent.

B.4 Activity, concentration and a perpetual mo-
tion machine

We consider a simple system with a polymer matrix that binds water and the
bound water is mobile and can diffuse through polymer matrix. The polymer
forms a membrane which either side is in contact with water vapor. The binding
energy between water and the polymer matrix or a sorbent can be described by
an equilibrium coefficient. We assume that material properties of the polymer
matrix change with position. Therefore, the equilibrium coefficient is not really
constant but depends on locations. We imagine a simple one-dimensional system
along x-axis in which the sorbent is located at the location 0 < x < L (see
Fig.(B.4)). The sorbent sorbs and desorbs water from and to the surrounding
environment through its surface at x = 0 and x = L according to Henry’s law.
The concentration of water in a sorbent, [H2O], can be expressed using a Henry’s
constant KHw and partial pressure of vapor in the surrounding environment Pw

as:

[H2O] = KHwPw (S.B.150)

Pw is constant and equal at the two sides of the flat sheet. Henry’s constant
KHw depends on a standard chemical potential of water inside the polymer.
If the material property changes across the membrane, Henry’s constant on
the two sides of the membrane are different. As a consequence, there must be
a gradient in water concentration inside a membrane. This gradient in turn
supports a flux, which violates the second law.
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C

Experimental section
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C.1 Titration theory

We consider the procedure to measure the amount of counter ion CO2−
3 attached

to the commercial AEM. First, we soak AEM into high-concention (e.g. 1[M])
NaCl solution. Due to the mass action law, most of the counter ion should be
replaced with Cl−. Therefore,

[Cl−]to AEM = [IEC]AEM (S.C.1)

= [HCO−3 ]released from AEM

+2[CO2−
3 ]released from AEM (S.C.2)

where, the subscript to AEM means the amount attached into the AEM, the
subscript initial means the initial concentration just before the titration (but
after soaking the AEM in the NaCl solution and after finishing the counter ion
replacement) and the subscript released from AEM means the amount released
from the AEM sample into the NaCl solution. If we define the initial concen-
tration of the DICI (Dissolved Inorganic Carbon as Ions) as [DICI]initial, the
conservation law of carbon results in:

[DICI]initial = [DICI]released from AEM (S.C.3)

= [HCO−3 ]released from AEM

+[CO2−
3 ]released from AEM (S.C.4)

Note that we neglect the CO2 dissolution from the ambient air during the
titration experiment because the titration procedure can be typically completed
within a couple of hours. We consider the following chemical equilibria:

CO2(aq) + H2O
K∗

1−−⇀↽−− H+ + HCO −
3 (S.C.5)

HCO −
3

K2−−⇀↽−− H+ + CO 2−
3 (S.C.6)

H2O
KW−−⇀↽−− H+ + OH− (S.C.7)

where,

KW ≡ [H+
(aq)][OH−(aq)] (S.C.8)

K∗1 ≡
[H+

(aq)][HCO−3(aq)]

[H2CO3(aq)]∗
(S.C.9)

K2 ≡
[H+

(aq)][CO2−
3(aq)]

[HCO−3(aq)]
(S.C.10)

[H2CO3(aq)]
∗ ≡ [H2CO3(aq)] + [CO2(aq)] (S.C.11)

33



[HCO−3(aq)] = [H2CO3(aq)]
∗ K

∗
1

[H+]
(S.C.12)

[CO2−
3(aq)] = [H2CO3(aq)]

∗K
∗
1K2

[H+]2
(S.C.13)

If we define the initial concentration of DICI (Dissolved Inorganic Carbon
as Ions) as [DICI]initial, then the conservation law of carbon results in:

[DICI]initial = [H2CO3(aq)]
∗ + [HCO−3(aq)] + [CO2−

3(aq)] (S.C.14)

= [H2CO3(aq)]
∗ ×

(
1 +

K∗1
[H+]

+
K∗1K2

[H+]2

)
(S.C.15)

Therefore,

[H2CO3(aq)]
∗ =

[DICI]initial

1 +
K∗

1

[H+] +
K∗

1K2

[H+]2

(S.C.16)

[HCO−3(aq)] =
K1

[H+]
× [DICI]initial

1 +
K∗

1

[H+] +
K∗

1K2

[H+]2

(S.C.17)

[CO2−
3(aq)] =

K∗1K2

[H+]2
× [DICI]initial

1 +
K∗

1

[H+] +
K∗

1K2

[H+]2

(S.C.18)

Then, the condition of charge neutrality is:

[H+] +�
��[Na+]original (S.C.19)

= [HCO−3 ] + 2[CO2−
3 ] + [OH−] (S.C.20)

+���[Cl−]original − [Cl−]to AEM + [Cl−]added (S.C.21)

where, the subscript original means the concentration before soaking the
AEM sample in the NaCl solution. For example, if we use 1 mol L−1 of NaCl
solution, then, [Na+]original = [Cl−]original = 1 mol L−1.

Now [Cl−]toAEM = [HCO−3 ]released from AEM + 2[CO2−
3 ]released from AEM, so,
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[Cl−]added

= [H+]− [HCO−3 ]− 2[CO2−
3 ]− [OH−]

+[HCO−3 ]released from AEM + 2[CO2−
3 ]released from AEM (S.C.22)

= [H+]

−(
K1

[H+]
+ 2

K∗1K2

[H+]2
)× [DICI]initial

1 +
K∗

1

[H+] +
K∗

1K2

[H+]2

−KW

[H+]

+[HCO−3 ]released from AEM + 2[CO2−
3 ]released from AEM (S.C.23)

= [H+]

−(
K1

[H+]
+ 2

K∗1K2

[H+]2
)× [HCO−3 ]released from AEM + [CO2−

3 ]released from AEM

1 +
K∗

1

[H+] +
K∗

1K2

[H+]2

−KW

[H+]

+[HCO−3 ]released from AEM + 2[CO2−
3 ]released from AEM (S.C.24)

Eq.(S.C.24) shows that [Cl−]added can be expressed as a function of pH and
vice versa. Fig.(C.1) shows the theoretical titration curve based on Eq.(S.C.24).
This plot is calculated assuming that 100 µmol of HCO−3 and 50 µmol of CO2−

3

(i.e., 150 µmol of DICI and 200 µmol of ion exchange capacity) are released
from the AEM sample into 200 mL of NaCl solution. The concentration of the
HCl for the titration is assumed to be 0.1 mol L−1. As is well-known, we can
see the buffer zone around pH=6 ∼ 7 in this theoretical titration curve . If
we define the pH value at the middle of this buffer zone as pHbuffer, it can be
expressed as:

d2[Cl−]added

dpH2

∣∣∣∣
pH=pHbuffer

= 0 (S.C.25)

In this buffer zone, [CO2−
3 ], [OH−] and [H+] are negligible since the solution

is almost neutral. Therefore,

[HCO−3(aq)] ∼
K∗1

[H+]
× [DICI]initial

1 +
K∗

1

[H+]

(S.C.26)

[CO2−
3(aq)] ∼ 0 (S.C.27)

Therefore,
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d2[Cl−]added

dpH2 ∼ −
d2[HCO−3(aq)]

dpH2 (S.C.28)

Now, by definition, we have the following relations:

pH ≡ − log10[H+] (S.C.29)

and

dpH

d[H+]
= − 1

[H+]

1

ln 10
(S.C.30)

Substituting these into
d2[HCO−

3(aq)
]

dpH2 yields:

d2[Cl−]added

dpH2 ∼ −(ln 10)2[DICI]initial
K∗1 ([H+]−K∗1 )

([H+] +K∗21 )3
(S.C.31)

Namely,

pHbuffer = − log10K
∗
1 (S.C.32)

= 6.35 (at T = 25◦C) (S.C.33)

Fig.(C.1) also indicates that there are sharp pH decreases before and after
this buffer area. The first sharp decrease shows that all the CO2−

3 in the solution
has been consumed and the second sharp decrease shows that all the HCO−3 in
the solution has been consumed by chemical reactions. So, if we define the
amount of Cl− ion that is added by the titration up to the first and the second
sharp pH decrease zones as x[mol] and 2x+ y[mol], then,

x = CO2−
3 released from AEM [mol] (S.C.34)

2x+ y = 2CO2−
3 released from AEM [mol] (S.C.35)

+HCO−3 released from AEM [mol] (S.C.36)

Therefore,

CO2−
3 released from AEM = x [mol] (S.C.37)

HCO−3 released from AEM = y [mol] (S.C.38)

DICIreleased from AEM = x+ y [mol] (S.C.39)

IECreleased from AEM = 2x+ y [mol] (S.C.40)
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Figure C.1: Theoretical titration curve (Eq.(S.C.24)) assuming that 100 µmol
of HCO−3 and 50 µmol of CO2−

3 are released from the AEM sample into 200
mL of NaCl solution. The concentration of the HCl used for the titration is
assumed to be 0.1 mol L−1. The two vertical lines show the points where the
CO2−

3 or the HCO−3 in the solution is completely consumed by the chemical
reaction with the HCl, respectively.
.
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C.2 Titration experiment

We soak a preconditioned sample into 500 mL of a 1 mol L−1 NaCl aqueous so-
lution. The counter ions contained in an AEM are transferred into the solution.
An equivalent amount of chloride ions moves from the solution to the AEM, in
order to maintain charge balance. We can measure this lost amount of chloride
by titration using 0.1 mol L−1 hydrochloric acid. Furthermore, charge conser-
vation enable us to distinguish between [HCO−3 ] and [CO2−

3 ] in this titration
experiment data.

Fig.(C.2) shows the measured titration data for a dry tiny sample (weight:
0.0694 dry-g) and a wet tiny sample (weight: 0.089 dry-g), using the Indus-
trial pH probe (model: ENV-50-pH) made by Atlas Scientific. Both of the
experimental data are consistent with the theoretical model of an ideal solution
except for some vertical bulk shift. There are some possible reasons of the ver-
tical shift, e.g., the non-perfect calibration of a pH probe or an influence from
an ionic strength. However, since we are only interested in where the sharp
decrease of pH occurs, very accurate pH values are not necessary. The second
titration result of the wet sample indicates there is no appreciable amount of
the DIC left behind, which confirms that all the DIC derived from these AEM
samples has been titrated in the first titration. Table.(C.1) summarizes the
measured amount of DIC, IEC and θ of the dry and wet sample.

The observed change of θ between a wet and a dry sample mean that the
preconditioned Fumasepr FAA-3-50 works as a moisture-controlled CO2 sor-
bent. The measured IEC per sample weight is 1.73±0.14 mmol/dryAEM-g for
the dry sample and 1.35±0.11 mmol/dryAEM-g for the wet sample, both of
which are comparable to the values in the manufacturer’s technical datasheet,
1.6-2.0 mmol/dryAEM-g.

This titration curve has a buffer zone at pH = 6.35 (at T = 25 ◦C). It also
indicates that there are sharp pH decreases before and after the buffer area. The
first sharp decrease shows that all the CO2−

3 in the solution has been consumed
and the second sharp decrease shows that all the HCO−3 in the solution has
been consumed by the titrant. So, if we define the amount of chloride ion that
is added by the titration up to the first and the second sharp pH decrease zones
as x and y, the DIC and the IEC can be derived as

DICAEM = y − x (S.C.41)

IECAEM = y (S.C.42)

Also, the amount of the counterion initially attached to the AEM sample can
be derived as

CO2−
3 AEM = x (S.C.43)

HCO−3 AEM = y − 2x (S.C.44)
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Figure C.2: Titration results; (a) for a dry membrane and (b) for a wet mem-
brane.
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In this section, a dry sample means that the sample is equilibrated with the
ambient air in the lab overnight while a wet sample indicates that the sample
is directly soaked into a DI water after being dried.

The comparison to the theoretical lines suggests that wet sample has 120±10 µmol
of IEC and 90±10 µmol of DIC (namely, θ ∼ 0.75± 0.08) while the dry sample
has 120±10 µmol of IEC and 120±10 µmol of DIC (namely, θ ∼ 1± 0.12).

Table C.1: Summary of the measured amount of DIC, IEC and θ in the original
samples by titration.
sample status DIC[µmol] IEC[µmol] θ sample weight [dry-g]

dry 120±10 120±10 1± 0.12 0.0694
wet 90±10 120±10 0.75± 0.08 0.089
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C.3 Main experimental setup and instruments

Some photos of the main experiment apparatus are shown in Fig.(C.3), Fig.(C.4)
and Fig.(C.5). In the following, we explain the stages of the flow lines from the
gas cylinders to the end one by one.

From gas cylinders to mass flow controllers. We prepare two gas cylin-
ders: a pure N2 cylinder and a mixed gas cylinder of 80% N2 and 20% CO2.
The gas flow from the former cylinder is split into four flow lines, two of which
goes through bubblers to generate wet N2 gas lines while the other two lines
remain dry. The gas flow from the mixed gas cylinder is split into two lines. So,
we have two sets of the following three lines: (1) dry N2 gas, (2) wet N2 gas and
(3) dry N2(80%)-CO2(20%) mixture gas. These three gases flow into mass flow
controllers (MFC) so that we can control concentrations of H2O and CO2 in the
two feed gas lines as we desire. The model of the MFCs used for dry and wet N2

gases are MC-100SCCM-D and the ones for dry N2(80%)-CO2(20%) mixture gas
are the MC-10SCCM-D-A019, both of which are made by Alicat Scientific. MC-
100SCCM has a calibrated range of 0-100 SCCM (Standard Cubic Centimeters
/ Minute), and the MC-10SCCM-D-A019 has a calibrated range of 0-10 SCCM.
Each has 5 digits of resolution. Note that the STP (standard temperature and
pressure) are 25◦C and 1 atm. The CO2 concentration in the feed gas is set to be
a constant value at the ambient level (i.e. 400 ppm) throughout the experiments.

From mass flow controllers to Infrared Gas Analyzers. After passing
through the MFCs, the six flow lines go into a custom acrylic box covered with
thermal insulation, in which the temperature is roughly controlled to be slightly
above 35 ◦C to avoid water condensation inside the flow lines (see Fig.(C.3)).
This acrylic box has three separate compartments: one for bubblers, one for In-
frared Gas Analyzers and one for a membrane sample holder. A heater (200W),
a fan and a temperature probe for temperature control is contained in each
compartment so that we can regulate the temperature in each compartment to
35◦C. For more accurate temperature control, the bubblers and the membrane
holder are immersed in water baths. The temperature of these water baths
are controlled to be 35.0± 0.2◦C using Cole-Parmer StableTemp Ceramic Stir-
ring Hot Plates (see Fig.(C.4)). After heat exchange in the water bath, only
the two N2 lines go thorough the bubblers in the water bath, which generate
water-saturated N2 feed gas at 35◦C. The three lines are merged to generate
the feed gas for one part of the sample holder (top cell); the other three lines
are merged for the feed gas for the other side of the membrane holder (bottom
cell). These two feed lines go into Infrared Gas Analyzers (IRGA) in the next
compartment. H2O and CO2 concentrations are measured simultaneously by
IRGAs. The IRGAs are LI-840 and LI-840A made by LI-COR.
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Figure C.3: A photo of the whole experiment setup without the lids of the
acrylic box.

From Infrared Gas Analyzers to the membrane sample holder. The
two lines go to the next compartment and are fed to the top cell and the bot-
tom cell of the membrane holder in the water bath, respectively. The custom
membrane holder consists of the two cells: the top half cell and the bottom half
cell. They are cylindrical cells with inner diameter of 7 cm. The open volume in
each half cell is about 120 cm3. The geometry of these cells is the same except
that the bottom cell have an inlet and outlet port on the wall while the top
cell does not. The top side and the bottom side of the membrane holder are
covered with acrylic plates of half-inch thickness during experiments. The top
acrylic lid has an inlet and outlet port for the top cell. The sample membrane
is sandwiched between two custom Viton gasket with inner diameter of 7 cm
and outer diameter of 10 cm. These gaskets are impermeable for both H2O and
CO2. The thickness of each gasket is 3 mm. The nominal membrane area is
the same as the area inside the inner circle of the gasket, i.e., 38.5 cm2. Both
the top cell and the bottom cell have a 1mm-depth recess to accommodate the
gasket in the center. The outlet lines from the top cell and the bottom cell go
back to the next compartment and pass through IRGAs to measure the H2O
and CO2 concentrations in the exit streams. In total, we use four IRGAs and
we refer to these as IRGA1, IRGA2, IRGA3 and IRGA4. Finally, the gases are
released into the environment outside the acrylic box. Since the flow resistance
is small, the total pressure throughout each line is approximately the ambient
pressure in the lab.
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Figure C.5: A photo of the whole experiment apparatus during an experiment.
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C.4 Control experiment: correction for the di-
lution due to addition of vapor

If we add water vapor through bubblers to the feed gas with a constant flow
rate, the CO2 in the flow line after the bubblers is slightly diluted. In these
experiments, we prefer to express the CO2 concentration relative to dry gas
rather than total amount of gas. Consequently, we apply the following correction
to the raw IRGA readings:

CO2cor[ppm] =
CO2raw[ppm]

1−
H2Oraw[ppt]

1000

(S.C.45)

As a control experiment, we measured H2O and CO2 concentrations in
IRGA1, IRGA2, IRGA3 and IRGA4 using the same custom membrane holder
and bubblers without a sample membrane held in the membrane holder. Dur-
ing the control experiment, we maintain at the ambient temperature in the
lab (T = 22.2 ± 0.2◦C). The inlet humidity for one flow line (for IRGA1 and
IRGA2) is increased from dry to wet while the inlet humidity in the other flow
line (for IRGA3 and IRGA4) is kept the same, as is shown in Fig.(C.6). This
plot confirms that the humidity in the two outlet flows (IRGA2 and IRGA4) are
equivalent to the average of the two inlet flows (IRGA1 and IRGA3) because
there is no membrane to prevent mixing in this control experiment. Fig.(C.7),
Fig.(C.8), Fig.(C.9) and Fig.(C.10) compare the CO2 concentration before and
after the correction has been applied. The raw CO2 data from the IRGAs before
the correction clearly show CO2 jumps at the points where the inlet humidity
is changed. After the correction, discontinuous CO2 jumps disappear. The in-
fluence of the bubblers on the CO2 concentrations are properly compensated by
Eq.(S.C.45).
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Figure C.7: Comparison between CO2 concentration from IRGA1 before and
after the correction using Eq.(S.C.45).
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Figure C.8: Comparison between CO2 concentration from IRGA2 before and
after the correction using Eq.(S.C.45).
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Figure C.9: Comparison between CO2 concentration from IRGA3 before and
after the correction using Eq.(S.C.45).
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