Supporting Information

Unveiling the role of lithium in cerium oxide based ceramic fuel cells

employing lithium compounds as anode

Enyi Hu,^a Wenjuan Zhao,^a Zheng Jiang,^a Faze Wang,^a Jun Wang,^{a*} Bin Zhu^{a*} and Peter Lund^b

^a Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint

Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China.

^b Department of Engineering Physics/Advanced Energy Systems, School of Science, Aalto

University, 00076 Aalto, Espoo, Finland.

* Corresponding authors: fazewang@seu.edu.com; zhu-bin@seu.edu.cn

Fig. S1 (a) extended stability under OCV state for NCAL/CeO₂/NCAL and (b) the EIS result for fuel cells under OCV in H_2 /air atmosphere at 500 °C.

Fig. S2 XPS survey results for pristine CeO₂ and type A \sim type B cell after hydrogen treatment.

Fig. S3 SEM imagines for type B cell (a) before and (after) hydrogen treatment.

Fig. S4 partial density of state for (a) CeO2 and (b) $Li_{0.0625}Ce_{0.9375}O_2$.

Table S1 EIS fitting results for NCA or NCAL as anode at 500 °C, R has the unit of Ω cm².

	RO	R1	CPE1-T	CPE1-P	R2	CPE2-T	CPE2-P	RP
NCAL/CeO ₂ /NCAL	0.378	0.023	0.016	1.212	0.308	1.372	0.540	0.331
NCA/CeO ₂ /NCAL	0.518	0.183	0.025	0.846	1.107	0.509	0.404	1.290

Table S2 peak fitting detail resulting for Ce 3d of type A and type B cell before and after treatment.

pristine		Туре А	L .	Туре В		
peak position(eV)	area	peak position(eV)	area	peak position(eV)	area	
882.161	78998.64	881.748	88059.769	882.46	82090.401	
884.67	31701.06	884.718	35840.988	885.045	48813.004	
888.593	54420.46	888.301	46790.619	889.03	48922.397	
897.986	90301.59	897.576	86052.122	898.435	88641.184	
900.681	61323.52	900.294	59221.475	901.003	44484.65	
902.845	12128.27	902.67	19331.629	902.688	29875.198	
907.2	54069.9	906.776	50292.857	907.515	52670.763	
916.322	79328.4	915.912	76692.586	916.719	66761.531	