Supplemental Material

Tetra (C₆₀) lanthanum phthalocyanine: design, synthesis and investigation of third-order

nonlinear optical properties.

Min Zhu, Jiale Ding, Sen Niu, Yunhe Zhang*, Guibin Wang

Key Laboratory of High Performance Plastics (Jilin University) Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China

1. Characterisation of monomer 1

The infrared spectra of (1), (2) and the monomer 1 are shown in Fig. S1. In the spectrum of the monomer 1, it can be seen that the vibrational absorption peak of CN is at 2230 cm⁻¹, and the stretching vibration absorption peak of C-H is near 1090 cm⁻¹; The peak around 660-900 cm⁻¹ corresponds to the out-of-plane bending vibration of the phenyl C-C bond; and the peak at 1742 cm⁻¹ corresponds to the stretching vibration of the C=O bond.

Fig. S2. ¹H NMR spectra of monomer 1.

The ¹H NMR spectra of monomer 1 is shown in Fig. S2. It exhibited the bands at approximately 7.85-8.49 ppm and 10.00 ppm, which were attributed to the H of Benzene and H of Aldehyde group. All the above results provide evidence of that monomer 1 has been successfully synthesized.

Fig S3. The high resolution mass spectrum of monomer 1

2. $^1\!\mathrm{H}$ NMR spectra and MALDI-TOF-MS spectra of LaPc

Fig. S4. (a) ¹H NMR spectra of LaPc; (b) the partial enlarged ¹H NMR spectra of LaPc.

Fig S5. The MALDI-TOF-MS spectra of LaPc is shown in Fig S5.

Fig S6. ¹H NMR spectra of tetra (C₆₀)-LaPc with Chloroform-d (CDCl₃) as the solvent.

Fig S7. The MALDI-TOF-MS spectra of tetra (C₆₀)-LaPc is shown in Fig S5.

4. XPS spectra

Fig. S8. XPS spectra of C 1s of LaPc.

5. Tauc spectra

Fig. S9. Tauc spectra of C_{60} , LaPc and tetra (C_{60})-LaPc.

6. CV spectra

Fig S10. The CV spectra of tetra(C_{60})–LaPc.

Table S1. $E_{\rm g},$ LUMO Energy Levels of the samples.

Samples	$E_{LUMO}(eV)$	E _g (eV)	$\lambda max(1)$	$\lambda max(2)$
LaPc	-3.275	1.732	693	705
C ₆₀	-3.304	1.951	/	/
tetra(C ₆₀)–LaPc	-3.792	1.696	705	710

 λ max (1) is the maximum absorption peak in the UV-Q band; λ max(2) is the maximum fluorescence emission peak.

7. UV-vis absorption and fluorescence emission spectra

Fig. S11. The normalized curves (a) UV-vis absorption and fluorescence emission spectra.

Fig S12. Open-aperture Z-scan curves of C_{60} , LaPc and tetra(C_{60})–LaPc nm excited by the different input energies at 532 nm and at 1064 nm with similar linear transmittance.

The changes in the curve of Z-scan at different incident light intensities have been shown in Fig. S11. The thirdorder non-linear optical intensities of C_{60} , LaPc and tetra(C_{60})–LaPc increase with the growing incident laser intensity, and in particular the anti- saturation absorption of tetra(C_{60})–LaPc is significantly enhanced, which can be attributed to its effective intramolecular PET/ET process.