Optimizing the fracture toughness of the dual cross-linked hydrogel via molecular dynamics simulation

Nan Hu, ${ }^{1,2}$ Yimin Wang, ${ }^{1,2}$ Ruibin Ma, ${ }^{1,2}$ Wenfeng Zhang, ${ }^{1,2}$ Bin Li, ${ }^{3}$ Xiuying Zhao ${ }^{1,2^{*}}$, Liqun Zhang, ${ }^{1,2^{*}}$ Yangyang Gao, ${ }^{1,2^{*}}$
${ }^{1}$ State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China
${ }^{2}$ Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China
${ }^{3}$ School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

1. The definition and calculation method of voids

First, the periodic box is divided into the cubic sub-cells of size Δ. Then, whether the polymer beads are within these small sub-cells are checked according to their positions. The sub-cells will be considered to be voids if there are no beads within these sub-cells. Thus, the position of voids can be obtained. Following it, the unoccupied subcells will be assigned to the same void if they share a common face (namely they are neighbors). As a result, the number of voids can be calculated. It is noted that the Δ of the sub-cell is chosen to be 1.6σ in this work, which can ensure no voids at strain $=0.0$.

[^0]

A beads: The physical cross-linked beads B beads: The chemical cross-linked beads C beads: The other polymer beads

Physical interaction
Chemical bond

Fig. S1 Schematic diagram of the polymer chain which contains three kinds of beads: (1) The red beads which form the physical network; (2) The blue beads which form the chemical network; (3) The green beads which are the other polymer beads.

Fig. S2 Rate of bond breakage with respect to the strain for different ratios $\left(\alpha_{c n}\right)$ of the chemical network to the total networks.

Fig. S3 (a) Number and (b) fraction of broken backbone bonds or cross-linked bonds for different ratios $\left(\alpha_{\mathrm{cn}}\right)$ of the chemical network to the total networks. $\left(\mathrm{T}^{*}=1.0\right)$

Fig. S4 The stress borne by one bead from physical network, chemical network or other polymer beads as a function of strain. ($\left.\alpha_{\mathrm{cn}}=\mathbf{0 . 2 5}\right)$

Fig. S5 The number distribution of clusters with the cluster size for different ratios (α_{cn}) of the chemical network to the total networks. ($\mathrm{T}^{*}=1.0$)

Fig. S6 Rate of bond breakage with respect to strain for different A bead-A bead interactions ($\left.\varepsilon_{\mathrm{AA}}\right) .\left(\alpha_{\mathrm{cn}}=\mathbf{0 . 2 5}\right)$

Table SI Parameters of each simulated system

System	Chain length	Number of chains	$\alpha_{\text {cn }}$	$\mathbf{N}_{\mathbf{A}}$	$\mathbf{N}_{\mathbf{B}}$	$\boldsymbol{\varepsilon}_{\text {AA }}$	$\mathbf{K}_{\text {CB }}$
1	100	400	0.0	8000	0	10.0	1000
2	100	400	0.25	6000	2000	10.0	1000
3	100	400	0.5	4000	4000	10.0	1000
4	100	400	0.75	2000	6000	10.0	1000
5	100	400	1.0	0	8000	10.0	1000
6	100	400	0.25	6000	2000	10.0	250
7	100	400	0.25	6000	2000	10.0	500
8	100	400	0.25	6000	2000	10.0	750
9	100	400	0.25	6000	2000	10.0	1500
10	100	400	0.25	6000	2000	10.0	2000
11	100	400	0.25	6000	2000	10.0	3000
12	100	400	0.25	6000	2000	3.0	1000
13	100	400	0.25	6000	2000	5.0	1000
14	100	400	0.25	6000	2000	15.0	1000
15	100	400	0.25	6000	2000	20.0	1000

$\alpha_{c n}$: Ratio of the chemical network to the total networks; N_{A} : Number of the physical cross-linked beads (A) in Fig. S1; \mathbf{N}_{B} : Number of the chemical cross-linked beads (B) in Fig. S1; $\varepsilon_{A A}$: The A bead-A bead interaction parameter; $K_{C B}$: The coefficient for the cross-linked bond potential.

[^0]: * Corresponding author: gaoyy@mail.buct.edu.cn or zhanglq@mail.buct.edu.cn

