# **Electronic Supplementary Information (ESI)**

# Monitoring Early-Stage $\beta$ -Amyloid Dimer Aggregation by Histidine Site-

## Specific Two-Dimensional Infrared Spectroscopy in a Simulation Study

Sompriya Chatterjee<sup> $\[n,t]</sup>$ , Yeonsig Nam<sup> $\[n,s,t]</sup>$ </sup>, Abbas Salimi<sup> $\[n,t]</sup>$ , and Jin Yong Lee<sup> $\[n,t]</sup>$ </sup>, \*</sup></sup>

<sup>¶</sup>Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea

<sup>§</sup> Department of Chemistry, University of California, Irvine, California 92697-2025, United

States

<sup>†</sup>*These authors contributed equally to this work* 

\*Corresponding author: jinylee@skku.edu (J. Y. Lee);

## Contents

| 1 | Binding free energy calculations | <b>S</b> 3 |
|---|----------------------------------|------------|
| 2 | Frequency calculations           | <b>S4</b>  |
| 3 | Supplementary figures            | <b>S6</b>  |
| 4 | Supplementary tables             | <b>S10</b> |
| 5 | References                       | <b>S11</b> |

#### **1** Binding free energy calculations

The binding free energy between the monomers that form dimers was determined by the Molecular Mechanics-Poisson Boltzmann surface area (MM-PBSA) approach using the following equation:

$$\Delta E_{binding} = G_{dimeric\ complex} - (G_{monomer\ 1} + G_{monomer\ 2})$$
(S1)

Moreover, for each individual part, the free energy can be given by:

$$G_i = \langle E_{MM} \rangle - TS + \langle G_{solv} \rangle$$
(S2)

where  $G_i$  indicates the total free energy.  ${}^1 < E_{MM} >$  is the average molecular mechanics potential energy, containing energy of both bonded and non-bonded terms. The bonded interactions consist of the angle, bond, and dihedral association while the van der Waals and electrostatic connections produce the non-bonded part. In addition,  $< G_{solv} >$  implies the sum of polar solvation energy and the non-polar solvation component, and TS denotes conformational entropy.<sup>1</sup> The non-polar solvation part is estimated by solvent accessible surface area (SASA). As the binding energy calculated here is the relative binding free energy, the entropic contribution of A $\beta$ s was ignored, which is in agreement with a number of earlier theoretical analyses.<sup>2,3</sup>

Comparison of the binding free energy of the protonated ( $\pi\pi\pi:\pi\pi\pi$ ) system with tautomeric dimers ( $\delta\delta\delta:\delta\delta\delta$  and  $\varepsilon\varepsilon\varepsilon:\varepsilon\varepsilon$ ) during aggregation has not yet been determined. The van der Waals and nonpolar terms (SASA) were negative in all dimers and favored complex formation (Table S1). On the other side,  $\Delta E_{binding}$  of the  $\delta\delta\delta:\delta\delta\delta$ , and  $\varepsilon\varepsilon\varepsilon:\varepsilon\varepsilon$  systems included unfavorable contributions of electrostatic energy. However, within  $\pi\pi\pi:\pi\pi\pi$ , the electrostatic contribution was one of the main contributing parameter to stabilize the dimeric complex. In contrast, the positive value of  $\Delta G_{polar}$  in  $\pi\pi\pi:\pi\pi\pi$  indicated its destabilizing effect. In the other two dimers,  $\delta\delta\delta:\delta\delta\delta$  and  $\varepsilon\varepsilon\varepsilon:\varepsilon\varepsilon\varepsilon$ , we observed unfavorable and favorable contributions of polar solvation energy.

#### 2 Frequency calculations

Before calculating 2D IR spectra, we determined vibrational frequency distributions within the dimer (Figure S3). Numerous parametrization schemes have been utilized for the vibrational mode in biomolecules. To obtain the amide-I frequency, the CHO4 parameterization, which is based on an extension of the vibration frequency as a linear combination of the electrostatic potential calculated at the four coordinates of C, O, N, and H of each amide bond, was used.<sup>4,5</sup> A previous work by Falvo and colleagues exhibited excellent correlation between theoretically and experimentally determined residual frequency fluctuations in A $\beta$  fibril by the CHO4 parameterization.<sup>6</sup> The vibration frequency of the *n*<sup>th</sup> protein bond positioned between the *r* and *r* + 1 residues was generated as:

$$\mathfrak{h}\omega_n = \mathfrak{h}\omega_0 + \sum_{s=C,O,N,H} l_s \phi_{n,s}(t).$$
(S3)

The sum is carried out over the C, N, H, and O atoms of the protein bond *n*. Similar to our monomeric work,<sup>7</sup> we fixed the central band  $(\hbar\omega_0)$  to 1600 cm<sup>-1</sup>. The  $l_s$  values are given by  $l_0 = 0.00160e$ ,  $l_c = -0.00554e$ ,  $l_N = 0.00479e$ , and  $l_H = -0.00086e$ , where *e* is the electronic charge. The electrostatic potential  $\phi_{n,s}$  was computed at the  $r_{n,s}(t)$  coordinate of the atom *s* of the *n*<sup>th</sup> protein bond as the sum of the backbones and side chains contribution:

$$\phi_{n,s} = \phi_{n,s}^{backbones}(t) + \phi_{n,s}^{side\ chains}(t), \tag{S4}$$

$$\phi_{n,s}^{P}(t) = \frac{1}{4\pi\varepsilon_0} \sum_{i \in P} \frac{q_i}{|r_i(t) - r_{n,s}(t)|}, \quad (P = \text{backbones or side chains})$$
(S5)

where  $\phi_{n,s}^{backbones}(t)$  and  $\phi_{n,s}^{side chains}(t)$  correspond to the electrostatic potential created by the Aβ dimer backbone and side chain atoms. Furthermore, the electrostatic potential contribution is obtained by the sum of point charges,  $q_i$ , over distance  $|r_i(t) - r_{n,s}(t)|$  and  $\varepsilon_0$  for all atoms (*i*) in the backbones and side chains. Similar to our previous research on the Aβ40 monomer,<sup>7</sup> the  $q_i$  of dimeric side chain atoms were calculated using the ff99SB force field. An earlier evidence suggested that the ff99SB parameter set supplied a reasonable parameter set for biomolecular simulations.<sup>8</sup> For backbone (C, O, N, H, C<sub>a</sub>, and H<sub>a</sub>) contributions, we followed the study of Ham *et al.*<sup>4,5</sup> who considered the values for  $q_{C_a}$ ,  $q_{H_a}$ ,  $q_c$ ,  $q_o$ ,  $q_N$ , and  $q_H$  as 0, 0, 0.419, -0.871, 0.793, and -0.341, respectively. Ham *et al.* compared ab initio and map frequency shift of peptides and found a good agreement between them using these values.

### **3** Supplementary figures



**Figure S1**. Root mean square deviation (RMSD) of residual backbone of  $\delta\delta\delta$ : $\delta\delta\delta$ ,  $\varepsilon\varepsilon\varepsilon$ : $\varepsilon\varepsilon\varepsilon$ , and  $\pi\pi\pi$ : $\pi\pi\pi$  dimers in total and converged part of each trajectory with initial structures.



**Figure S2**. Schematic drawing of the location (red circle) and direction (red arrow) of the transition dipole used in this study.



**Figure S3.** The average frequency shift,  $\langle \hbar \omega_0 - \hbar \omega_n \rangle$ , of amide-I vibration induced by the electrostatic potential of the backbone, and side chains. The black, red, and blue lines refer to the

average frequency shifts of dimers due to the total (backbone + side chain) protein, backbone, and side chains, respectively.



**Figure S4.** Frequency deviations and distributions of histidine in A $\beta$ 40 dimers. Frequency and time units are given in cm<sup>-1</sup> and ps, respectively.

### 4 Supplementary tables

**Table S1**. Average Van der Waals, electrostatic, solvent accessible surface area, polar solvation, and binding free energy for each dimer. (Parentheses indicate the standard error) (Energy units are in kJ/mol).

| Dimers  | $\Delta E_{vdw}$ | $\Delta E_{elec}$ | $\Delta G_{polar}$ | $\Delta G_{sasa}$ | $\Delta E_{binding}$ |
|---------|------------------|-------------------|--------------------|-------------------|----------------------|
| δδδ:δδδ | -152.456         | 15.322            | 21.240             | -17.516           | -133.373             |
|         | (2.114)          | (1.884)           | (3.909)            | (0.248)           | (1.217)              |
| 333:333 | -105.762         | 111.535           | -152.205           | -12.072           | -158.622             |
|         | (1.588)          | (0.635)           | (1.276)            | (0.186)           | (1.443)              |
| πππ:πππ | -15.415          | -6.083            | 22.587             | -1.657            | -0.540               |
|         | (0.707)          | (0.319)           | (1.043)            | (0.078)           | (0.649)              |

**Table S2.** Parameters obtained from fitting the FFCF. Here,  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$ , and  $\gamma$  are given in ps<sup>-1</sup>.

| δδδ: δδδ | <i>a</i> <sub>1</sub> | γ       | $	au_1$ | <i>a</i> <sub>2</sub> | $	au_2$ | <i>a</i> <sub>3</sub> | $	au_3$ |
|----------|-----------------------|---------|---------|-----------------------|---------|-----------------------|---------|
| His 6    | 0.2836                | 31.3921 | 19.0152 | 0.3415                | 9.5244  | 0.3114                | 0.0824  |
| His 13   | 0.4246                | 13.8686 | 34.1696 | 0.3307                | 16.6173 | 0.2487                | 0.1255  |
| His 14   | 0.2957                | 27.0168 | 18.2420 | 0.5256                | 19.1260 | 0.1252                | 0.0878  |
| His 46   | 0.3982                | 33.0579 | 18.5208 | 0.4002                | 9.4549  | 0.3764                | 0.0865  |
| His 53   | 0.3360                | 25.4656 | 18.2159 | 0.5618                | 10.5719 | 0.3365                | 0.2275  |
| His 54   | 0.5826                | 16.3368 | 8.4836  | 0.2832                | 22.4910 | 0.1497                | 0.2503  |
| 333:333  |                       |         |         |                       |         |                       |         |
| His 6    | 0.4676                | 25.7328 | 27.4524 | 0.3829                | 6.7148  | 0.3679                | 0.1853  |
| His 13   | 0.4925                | 12.5483 | 4.6523  | 0.2350                | 18.4312 | 0.2434                | 2.1248  |
| His 14   | 0.4190                | 44.8515 | 26.6529 | 0.3773                | 10.1619 | 0.2018                | 0.2830  |
| His 46   | 0.2611                | 17.6551 | 28.0602 | 0.3199                | 12.1556 | 0.5309                | 0.0980  |
| His 53   | 0.5874                | 31.4824 | 16.5080 | 0.3321                | 11.0780 | 0.2064                | 0.2075  |
| His 54   | 0.4155                | 21.6772 | 17.6728 | 0.3862                | 14.0373 | 0.2100                | 0.2752  |
| πππ:πππ  |                       |         |         |                       |         |                       |         |
| His 6    | 0.2794                | 16.3661 | 18.8987 | 0.3794                | 14.8039 | 0.3328                | 0.1000  |
| His 13   | 0.4358                | 25.5970 | 24.1166 | 0.3913                | 11.1287 | 0.2574                | 0.2135  |
| His 14   | 0.2634                | 75.5993 | 26.2464 | 0.4019                | 5.5404  | 0.3784                | 0.1875  |
| His 46   | 0.4988                | 25.3877 | 22.6755 | 0.3986                | 12.9756 | 0.3081                | 0.3814  |
| His 53   | 0.4624                | 39.4040 | 25.8612 | 0.4196                | 5.8628  | 0.3361                | 0.1010  |
| His 54   | 0.4653                | 35.3141 | 18.9580 | 0.3407                | 11.1486 | 0.2892                | 0.1593  |

**Table S3.** Comparison of the average distances (unit: Å) between histidine and other residues in monomer<sup>7</sup> and dimer. The lengths were determined by calculating the distance between the dipole center every time step and averaged over 200 ps.

|                        | His 6 | His 46 | His 13 | His 53 | His 14 | His 54 |  |
|------------------------|-------|--------|--------|--------|--------|--------|--|
| εεε <sup>7</sup>       | 12.3  |        | 15.6   |        | 14.8   |        |  |
| 333:333                | 18.2  | 13.6   | 20.4   | 14.8   | 18.5   | 13.6   |  |
| $\delta\delta\delta^7$ | 11    | .8     | 13     | 5.8    | 16     | .3     |  |
| δδδ:δδδ                | 14.4  | 13.5   | 16.6   | 18.2   | 16.1   | 19.9   |  |
| $\pi\pi\pi^7$          | 11.8  |        | 15.3   |        | 18.3   |        |  |
| πππ:πππ                | 12.8  | 11.9   | 16.2   | 19.4   | 16.2   | 17.1   |  |

#### **5** References

- R. Kumari, R. Kumar and A. Lynn, *Journal of Chemical Information and Modeling*, 2014, 54, 1951–1962.
- 2 Y. Sun, Z. Qian and G. Wei, *Physical Chemistry Chemical Physics*, 2016, **18**, 12582–12591.
- 3 Y. Sun, W. Xi and G. Wei, *The Journal of Physical Chemistry B*, 2015, **119**, 2786–2794.
- 4 J.-H. Choi, S. Ham and M. Cho, *The Journal of Physical Chemistry B*, 2003, **107**, 9132–9138.
- S. Ham, S. Cha, J.-H. Choi and M. Cho, *The Journal of Chemical Physics*, 2003, **119**, 1451–1461.
- 6 C. Falvo, W. Zhuang, Y. S. Kim, P. H. Axelsen, R. M. Hochstrasser and S. Mukamel, *The Journal of Physical Chemistry B*, 2012, **116**, 3322–3330.
- 7 Y. Nam, M. Kalathingal, S. Saito and J. Y. Lee, *Biophysical Journal*, 2020, **119**, 831–842.

 V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling, *Proteins: Structure, Function, and Bioinformatics*, 2006, 65, 712–725.