Semiconductors with Chiral Crystal Structure in Group IVB Transition Metal Pernitrides

Xing Xie^a, Minru Wen^{a,*}, Huafeng Dong^a, Hui Long^a, Xin Zhang^a, Fugen Wu^b and Zhongfei Mu^c

^aSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China

^bSchool of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

^cExperimental Teaching Department, Guangdong University of Technology, Guangzhou, 510006, China

*E-mail: mrwen@gdut.edu.cn

	1	./1	d2	d3	d4	volume	Band Gap	
	$d_{ m N-N}$	<i>d</i> 1					PBE	HSE06
TiN ₂	1.385	2.076	2.145	2.275	2.403	76.42	0.413	1.076
ZrN_2	1.440	2.229	2.308	2.418	2.524	91.86	0.703	1.341
HfN_{2}	1.467	2.199	2.273	2.385	2.504	89.27	1.089	1.838

Table S1. The bond lengths (Å) of N-N (d_{N-N}) and TM-N bond, volume (Å³) and band gap (eV) calculated by PBE and HSE06 at ambient pressure for $P3_121$ -TMN₂. d1-d4 denote four type TM-N bonds marked in Figure 1 (c).

Table S2. Calculated lattice constants and Wyckoff Position for TiN_2 at 0 GPa.

Phase	lattice constants (Å)	Wyckoff Position					
	lattice constants (Å)	atom	position	х	У	Z	
<i>P</i> 3 ₁ 21	<i>a</i> = <i>b</i> =4.147, <i>c</i> =5.130	Ti	3a	0.0000	0.6450	0.6667	
10121	<i>α=β=</i> 90°, <i>γ=</i> 120°	Ν	6c	0.1602	0.8002	0.0915	
D2 21	<i>a</i> = <i>b</i> =4.147, <i>c</i> =5.130	Ti	3a	0.6451	0.0000	0.6667	
<i>P</i> 3 ₂ 21	<i>α=β=</i> 90°, <i>γ=</i> 120°	Ν	6c	0.3601	0.2000	0.4249	

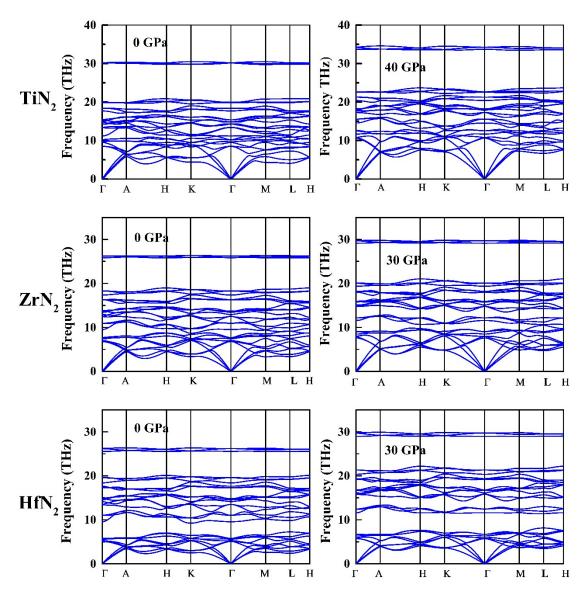


Figure S1. Phonon spectrum of P3₁21-TMN₂ at 0 GPa and high pressure.

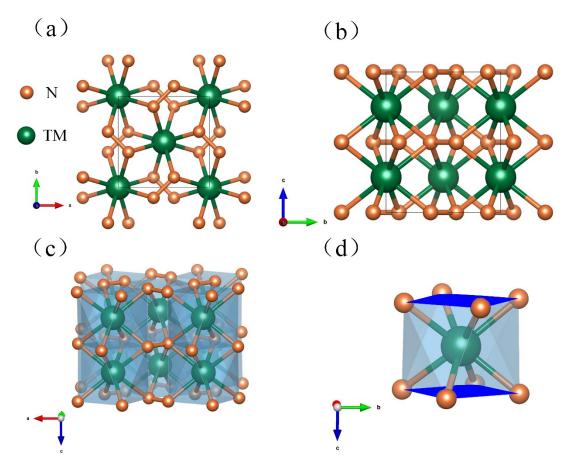


Figure S2. Crystal structure of I4/mcm-TMN₂ for view of (a) [001] and (b) [100] direction. (c) conventional unit cell with decanedrons and (d) diagram of a single decanedron. The blue planes denote the N atom layers. The up plane of decanedron is parallel to the bottom plane, and the rotation angle from up N layer to bottom N layer are 32.23° (anticlockwise) or 57.77° (clockwise).

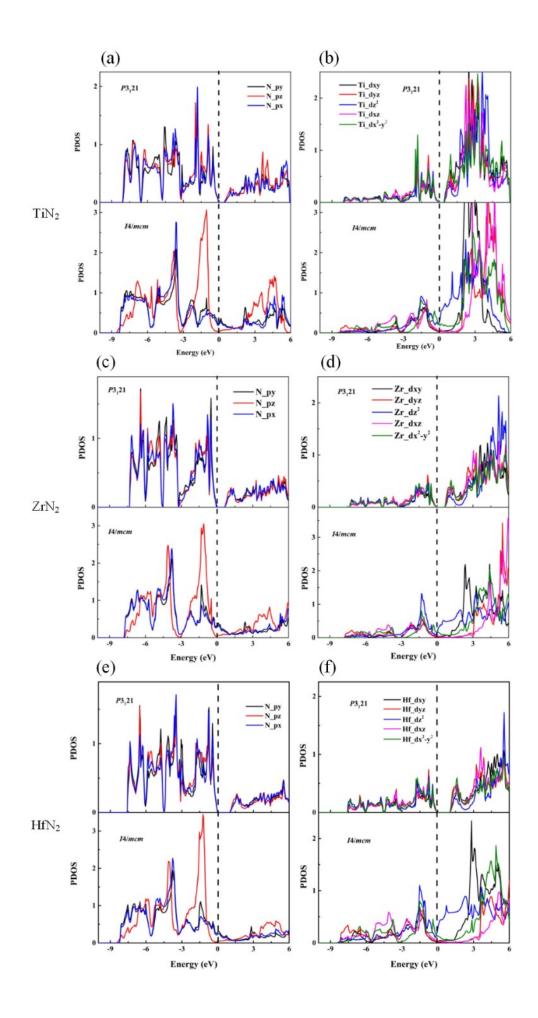


Figure S3. Projected density of state (PDOS) of N_2p and TM_d orbitals of $P3_121$ (up panel) and I4/mcm (bottom panel) phases for (a) and (b) TiN₂, (c) and (d) ZrN₂, and (e) and (f) HfN₂, respectively. The partial orbital of N_p (N_py, N_pz, and N_px) and TM_d (TM_dxy, TM_dyz, TM_dz², TM_dxz, and dx²-y²) of $P3_121$ phase show nearly evenly contribution in the -8-6 eV energy ranges, respectively. However, in I4/mcm phase, the orbital contribution of N_pz are not the same as that of N_py and N_px, and the projected orbital of TM_d show different contribution, such as the mainly contribution of dz² for 0-2 eV. It is indicated that there is significant difference between $P3_121$ and I4/mcm structures on the contribution of partial orbitals of N_2p and TM_d orbitals.

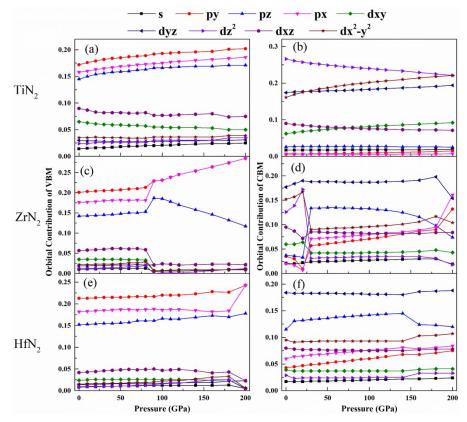


Figure S4. Projected orbital contribution of VBM and CBM as a function of pressure in P3₁21 phase.

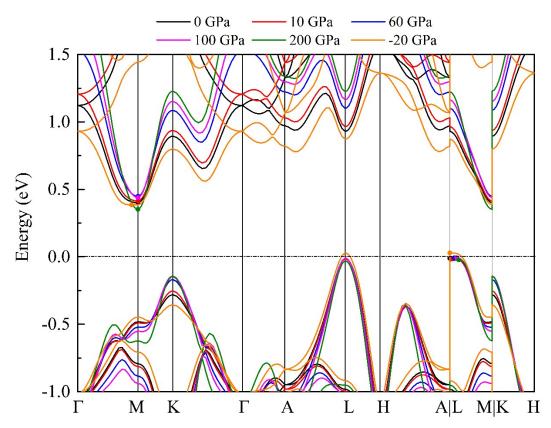


Figure S5. Band structure of $P3_121$ -TiN₂ at ambient and high pressure. The CBM is at M point in the pressure range 0-200 GPa, while the CBM is on the line between Γ and M at -20 GPa (the negative sign represents the applied hydrostatic expansion pressure). The VBM at 0 and -20 GPa is at L point, and with the pressure of increase, the VBM moves from L point to the point between L and M.

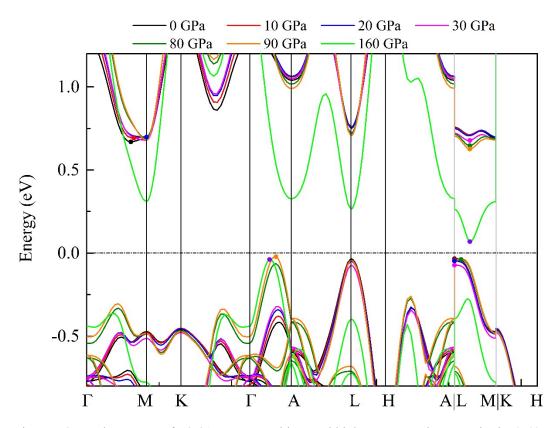


Figure S6. Band structure of $P3_121$ -ZrN₂ at ambient and high pressure. The VBM in the 0-40 GPa pressure range is at L point, and with the pressure of increase (40-80 GPa), the VBM moves from L point to the point between L and M, and then in the pressure range of 90-200 GPa, the VBM is on the line between Γ and A point. The CBM is between Γ and M point at 0-10 GPa, and at 20 GPa the CBM is at M point, but with increasing of pressure (30-200 GPa), the CBM is between L and M point.

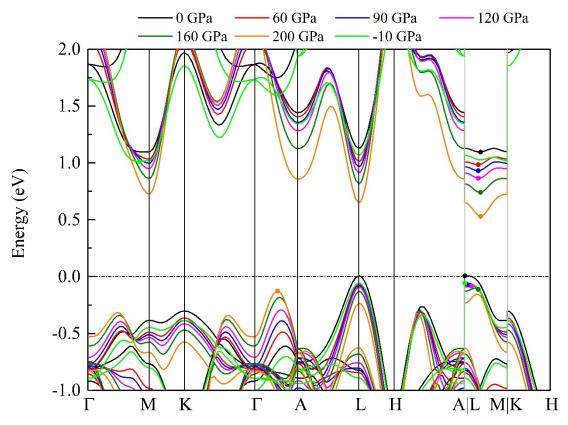


Figure S7. Band structure of $P3_121$ -HfN₂ at ambient and high pressure. The CBM is located on the line between L and M point in the pressure range of 0-200 GPa, but is located on the line between Γ and M point at -10 GPa (the negative sign represents the applied hydrostatic expansion pressure). It should be noted that the CBM at 0 and 160-200 GPa is on the same k-point, while the CBM at 10-140 GPa is located on the other one k-point. In the pressure range of -10-50 GPa, the VBM is at L point. With the pressure of increasing (50-180 GPa), the VBM moves from L point to the point between L and M, and then moves the point between Γ and A at the pressure of 200 GPa.

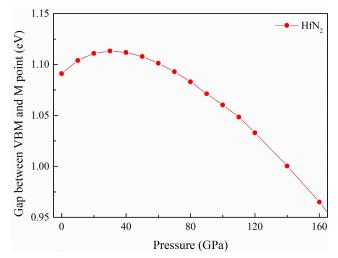


Figure S8. The energy gap between VBM and M point of conduction band for P3₁21-HfN₂.

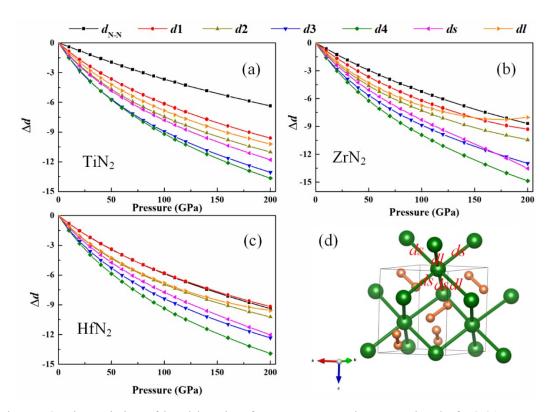


Figure S9. The variation of bond lengths of N-N, TM-N, and TM-TM bond of $P3_121$ structure $d - d_1$

 $\Delta d = \frac{d - d_0}{d_0} * 100\%$ expressed in percent ($\Delta d = \frac{d - d_0}{d_0} * 100\%$, where d_0 and d are the bond lengths at zero and high pressure, respectively.) as a function of pressure for (a) TiN₂, (b) ZrN₂, and (c) HfN₂. (d) Crystal structure of $P3_121$ with the TM-TM and N-N bonds, and the ds and dl are the shorter and longer bond length of TM-TM bonds, respectively.

	В		G		H_{v}	
	This works	Theory ^a	This works	Theory ^a	This works	Theory ^a
c-Zr ₃ N ₄	225.8	218.3	127.1	129.3	14.4	15.6
c-Hf ₃ N ₄	241.3	228.1	139.1	138.1	15.8	16.9

Table S3. The calculated bulk modulus B, shear modulus G, and Vickers hardness H_v (in units of GPa) for c-Zr₃N₄ and c-Hf₃N₄ at ambient pressure.

^aRef¹

Reference

1. Mattesini, M.; Ahuja, R.; Johansson, B., Cubic Hf_3N_4 and Zr_3N_4 : A class of hard materials. *Physical Review B* **2003**, *68* (18).