Supporting Information

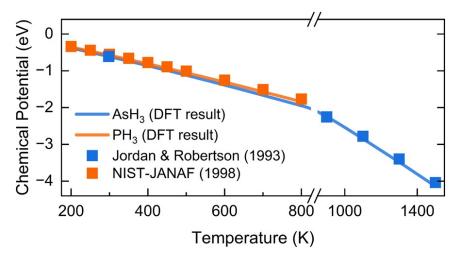
Transition-Metals Decorated Graphdiyne Monolayer as Efficient Sensor toward Phosphide (PH₃) and Arsine (AsH₃)

S. Singsen,^{1,2} N. Thasami,^{1,3} P. Tangpakonsab,^{1,4} H. Bae,^{5,6} H. Lee,⁵ T. Hussain,⁷ T. Kaewmaraya^{1,3*}

¹Department of Physics, Khon Kaen University, Khon Kaen, Thailand

²School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

³Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen, 40002, Thailand


⁴Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC/01, 1060 Vienna, Austria

⁵Department of Physics, Konkuk University, Seoul 05029, Republic of Korea

⁶Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

⁷School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia

thakaew@kku.ac.th

Figure S1. Chemical potential of AsH₃ and PH₃ molecules in the gas phase, calculated in ω B97XD/aug-cc-pVTZ level of theory, and excerpted from experimental reports [1, 2].

References

- 1. Chase, M.W. and N.I.S. Organization, *NIST-JANAF thermochemical tables*. Vol. 9. 1998: American Chemical Society Washington, DC.
- 2. Jordan, A. and A. Robertson, *Equilibrium gas-phase composition and thermodynamic properties including subhydrides in the pyrolysis of AsH3 and PH3*. Journal of crystal growth, 1993. **128**(1-4): p. 488-493.