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I: Apparent diffusion coefficient matrix
Using Einstein’s relation, as discussed in the main text, the friction coefficients of 

the nanoparticle relative to water and the gel network are given by  and 𝜉𝑐𝑤 = 𝑘𝐵𝑇 𝐷𝑐𝑤

, where  and  are the diffusivities of the nanoparticle in water and 𝜉𝑐𝑝 = 𝑘𝐵𝑇 𝐷𝑐𝑝 𝐷𝑐𝑤 𝐷𝑐𝑝

in polymer network (percolated solid), respectively. We consider here  as a 𝐷𝑐𝑤

constant at a certain temperature 36 ℃, while the diffusivity  is generally 𝐷𝑐𝑝

associated with the percolated nature of crosslinked polymer network and can be 
complicated. As the microgel shrinks, the polymeric network displays a compressible 
deformation, leading to an increasing concentration of entangled polymers in the bulk, 
which reduces the average mesh size in the gel network. In consequence, the 
diffusivity of nanoparticles throughout the deswollen microgel will be significantly 
altered. In this work, we would like to address such a complexity in  by utilizing 𝐷𝑐𝑝

the empirical expression suggested by R. Hołyst et al.,1 yielding
𝐷𝑐𝑤

𝐷𝑐𝑝
= 𝑒𝑥𝑝(𝑅𝑒𝑓𝑓

𝜁 )𝑎,                                                   (𝑆1)

where the fitting exponent  is assumed to be a constant of order 1 (whose physical 𝑎

meaning is still under discussion 1),  is the correlation length interpreted as the 𝜁

average mesh size in the polymer network, and  is an effective hydrodynamic 𝑅𝑒𝑓𝑓

radius related to the nanoparticle radius  and the gyration radius of a polymer coil 𝑅𝑐

 at the reference state. In such a diffusivity model, the correlation length, or the 𝑅𝑝

average mesh size, is suggested to be expressed by a simple scaling law as following
𝜁 = 𝑏𝑅𝑝𝜙𝑝

𝛽,                                                            (𝑆2)

where the pre-factor is assumed to be , and the exponent is taken as  in a 𝑏 = 1 𝛽 =‒ 0.75

good solvent.1,2 Eq. S2 indicates that the average mesh size between the entangled 
polymers increases with an increasing gyration (or hydrodynamic) radius of the 
polymer coil, while decreases with an increasing polymer concentration. Furthermore, 

the effective radius can be conducted by the correlation function , 𝑅𝑒𝑓𝑓
‒ 2 = 𝑅𝑐

‒ 2 + 𝑅𝑝
‒ 2

yielding

𝑅𝑒𝑓𝑓 = 𝑅𝑝(1 + (𝜆𝑝

𝜆𝑐
)2) ‒

1
2,                                           (𝑆3)

where , .𝜆𝑐 = 𝑅𝑐 𝑅𝑤 𝜆𝑝 = 𝑅𝑝 𝑅𝑤

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



2

Solving the force balance equations for water and the nanoparticle inside the 
microgel with condition of zero bulk volumetric flux, Eqs. 1-3 in the main text, we 
can obtain the average velocities of water and the nanoparticle with respect to the gel 
network, respectively

𝑉𝑤 = 𝑑11 ∗
∂

∂𝑟( ∂𝑓̃
∂𝜙𝑤

) + 𝑑12 ∗
∂

∂𝑟( ∂𝑓̃
∂𝜙𝑐

),                                      (𝑆4)

𝑉𝑐 = 𝑑21 ∗
∂

∂𝑟( ∂𝑓̃
∂𝜙𝑤

) + 𝑑22 ∗
∂

∂𝑟( ∂𝑓̃
∂𝜙𝑐

),                                      (𝑆5)

where  is the dimensionless free energy density, and the coefficients are 𝑓̃ = 𝑓𝜎𝑤 𝑘𝐵𝑇

presented as following

𝑑11 =
5𝐷𝑤𝑐

𝑄
𝜆𝑐

3𝜆𝑝
2𝜙𝑤

5(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2𝛽(1 + ⅇ

(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐) ‒ 𝛽

1 + (𝜆𝑝 𝜆𝑐)2 ),                      (𝑆6)

𝑑12 =
5𝐷𝑤𝑐

𝑄
𝜆𝑐

3𝜆𝑝
2𝜙𝑐(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2𝛽,                                              (𝑆7)

𝑑21 =
5𝐷𝑤𝑐

𝑄
𝜆𝑐

3𝜆𝑝
2𝜙𝑤

5(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2𝛽,                                              (𝑆8)

𝑑22 =
𝐷𝑤𝑐

𝑄
𝜆𝑐

3(5𝜆𝑝
2𝜙𝑐(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2𝛽 + 4𝐾𝑔𝜆𝑐

2𝜙𝑤
5(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2),             (𝑆9)

.

𝑄

=‒ 4𝐾𝑔𝜆𝑐
2𝜙𝑤

5(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2 ‒ ⅇ

(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐) ‒ 𝛽

1 + (𝜆𝑝 𝜆𝑐)2

(5𝜆𝑝
2𝜙𝑐(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2𝛽 + 4𝐾𝑔𝜆𝑐

2𝜙𝑤
5(1 ‒ 𝜙𝑤 ‒ 𝜙𝑐)2)

(S10)
In above equations, we have employed the semi-empirical expressions to qualify 

the permeability of water penetrating through the nanoparticles (obtained by Russel et 
al. 3) and the gel network (Carmen-Kozeny expression 2,4), respectively

𝜅𝑤𝑐 =
𝑅𝑐

2

𝐾𝑐

𝜙𝑤
6

𝜙𝑐
,                                                        (𝑆11)

𝜅𝑤𝑝 =
(𝜁
2)2

𝐾𝑝

𝜙𝑤

𝜙𝑝
2
,                                                      (𝑆12)

where the constant  is often for colloids, while the Kozeny constant for the gel 𝐾𝑐 = 5

network  should be usually determined by the experimental measurements.𝐾𝑝

Substituting above set of equations into the fluxes of water  and the 𝐽𝑤 = 𝜙𝑤𝑉𝑤

nanoparticle , as represented in Eqs. 6 and 7 in the main text, we can express, 𝐽𝑐 = 𝜙𝑐𝑉𝑐

therefore, the apparent diffusivity matrix  mentioned in the main text as following𝐷

𝐷 = |𝜙𝑤(𝑑11𝑓̃𝑤𝑤 + 𝑑12𝑓̃𝑤𝑐) 𝜙𝑤(𝑑12𝑓̃𝑐𝑐 + 𝑑11𝑓̃𝑤𝑐)
𝜙𝑐(𝑑21𝑓̃𝑤𝑤 + 𝑑22𝑓̃𝑤𝑐) 𝜙𝑐(𝑑22𝑓̃𝑐𝑐 + 𝑑21𝑓̃𝑤𝑐)|,                     (𝑆13)

where ,  and . Therefore, the candidates  ( =1,2) 
𝑓̃𝑤𝑤 =

∂2𝑓̃

∂𝜙𝑤
2

𝑓̃𝑐𝑐 =
∂2𝑓̃

∂𝜙𝑐
2 𝑓̃𝑤𝑐 =

∂2𝑓̃
∂𝜙𝑤∂𝜙𝑐 𝐷𝑖𝑗 𝑖,𝑗
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mentioned in the main text can correspond to the components of the matrix  as 𝐷

shown in Eq. S13.

II: Free energy density model
As stated in the main text, the free energy density in the nanocomposite microgel 

can be simply written as 
𝑓 = 𝑓𝑚𝑖𝑥 + 𝑓𝑒𝑙𝑎 + 𝑓𝑒𝑥𝑡.                                               (𝑆14)

The first two items in Eq. S14 have been explained in the main text. Here, we 
emphatically address the last item, i.e., the extra free energy density , which 𝑓𝑒𝑥𝑡

consists of two contributions  with  accounting for the interparticle 𝑓𝑒𝑥𝑡 = 𝑓𝑐𝑐 + 𝑓𝑐𝑝 𝑓𝑐𝑐

interactions and  for the interactions between the nanoparticle and the crosslinked 𝑓𝑐𝑝

polymer matrix. 

 can be analytically written as , where  is the hard-𝑓𝑐𝑐
𝑓𝑐𝑐 =

𝑘𝐵𝑇

𝜎𝑐
𝜙𝑐∫ 

𝑍(𝜙𝑐)
𝜙𝑐

 𝑑𝜙𝑐 𝑍(𝜙𝑐)

sphere compressibility as suggested by Carnahan-Starling model 3

𝑍(𝜙𝑐) =
1 + 𝜙𝑐 + 𝜙𝑐

2 ‒ 𝜙𝑐
3

(1 ‒ 𝜙𝑐)3
,    (0 ≤ 𝜙𝑐 ≤ 0.55)                       (𝑆15)

Alternatively, the series expansion of the state equation for the hard sphere model 
with respect to the higher virial coefficient can also achieve the approximate approach. 
For example, using the summation till the 7th virial expansion, we can calculate the 
formula

7

∑
𝑖 = 2

𝐵𝑖

𝜎𝑐
𝑖
𝜙𝑐

𝑖,                                                           (𝑆16)

where the expansion parameter is given by  with  being the  virial 𝐵𝑖 = 𝑏𝑖[(2𝑅𝑐)3]𝑖 ‒ 1 𝑏𝑖 𝑖𝑡ℎ

coefficient as list in Table 1

Table 1: Virial coefficients  for different orders𝑏𝑖

𝑏2 2.0944 𝑏5 2.1223
𝑏3 2.7415 𝑏6 1.5555
𝑏4 2.6362 𝑏7 1.1647

Accordingly, we can calculate the parameter  as listed in the Table 2𝐵𝑖

Table 2: Expansion parameters  for different orders𝐵𝑖

𝐵2 4𝜎𝑐 𝐵5 28.2366𝜎𝑐
4

𝐵3 10𝜎𝑐
2 𝐵6 39.5255𝜎𝑐

5

𝐵4 18.3646𝜎𝑐
3 𝐵7 56.5226𝜎𝑐

6

 is analytically expressed as𝑓𝑐𝑝

𝑓𝑐𝑝 =
𝑘𝐵𝑇

𝜎𝑝
𝜙𝑝ln

𝜙𝑝

𝛼(𝜙𝑐)
.                                             (𝑆17)
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In Eq. S17, the so-called free volume fraction  is expressed in the formula as 𝛼(𝜙𝑐)

suggested by Lekkerkerker et al. 5-7

𝛼(𝜙𝑐) = (1 ‒ 𝜙𝑐)𝑒𝑥𝑝( ‒ 𝐴𝛾 ‒ 𝐵𝛾2 ‒ 𝐶𝛾3),                           (𝑆18)

where . The quantities ,  and  are the functions of ratio , 𝛾 = 𝜙𝑐 (1 ‒ 𝜙𝑐) 𝐴 𝐵 𝐶 𝛿 = Δ 𝑅𝑐

where  is the depletion thicknessΔ

𝐴 = 3𝛿 + 3𝛿2 + 𝛿3,                                                (𝑆19)

𝐵 =
9
2

𝛿2 + 3𝛿3,                                                     (𝑆20)

𝐶 = 3𝛿3.                                                           (𝑆21)

The function  appears to characterize the excluded volume interactions 𝛼(𝜙𝑐)

between the nanoparticle and the polymer coil. It is worth mentioning that such a 
depletion thickness , according to free volume theory, should be modeled in relation Δ

to the curvature of crosslinked polymer monomer forming the gel network. 
Lekkerkerker et al. 5-7 suggested a mean-field expression of  (scaled by colloid Δ

radius ) which is derived explicitly for the semi-dilute regime and the broad range 𝑅𝑐

of size ratio 𝑅𝑝 𝑅𝑐

Δ
𝑅𝑐

= [1 + 3.213
𝜁

𝑅𝑐
+ 2.09( 𝜁

𝑅𝑐
)2]

1
3 ‒ 1.                           (𝑆22)

In Eq. S22, we have considered that the depletion thickness  should be polymer-Δ

concentration-dependent, indicating that the gyration radius of polymer coil  used 𝑅𝑝

in the original model of  has been now displayed by the correlation length , i.e., the Δ 𝜁

mesh size in the polymer network. With above set of equations, the free energy 
density  represented in Eq. 5 in the main text can be eventually determined. Fig. S1 𝑓

shows the depletion layer thickness varying with the gyration radius of polymer coil 
 and the concentration of polymers . The depletion layer becomes thinner as 𝑅𝑝 𝜙𝑝

either the microgel gets stiffer (a decreasing ) or the polymer concentration 𝑅𝑝

increases.
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Fig. S1 Depletion layer thickness is plotted as functions of gyration radius of polymer 
coil  and concentration of polymers  for the nanoparticle with  nm. 𝑅𝑝 𝜙𝑝 𝑅𝑐 = 5

III: Soft-Cell approach (SCA) with dimensionless procedure
SCA is developed on the basis of Lagrangian framework, and is capable of 

addressing the gel dynamics involving the coexistence of multi-components 
diffusions and elastic deformation of gel network, as termed diffusio-mechanical 
coupling (DMC) regime.8 One outstanding advantage of employing SCA is that the 
resulting moving interface of the gel materials can be directly determined via the 
conservation law of the crosslinked polymers (or colloids) retained in the gel instead 
of solving additional boundary condition which is often derived with a complex 
function of the multi-components’ concentrations.

In short, the employment of SCA can not only enable a dynamic modeling 
framework to read elegantly, but also achieve the convenience in performing the 
numerical procedures. Such an approach has been invoked to solve the sedimentation 
dynamics of the colloidal gel materials in our previous work.9
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Fig. S2 Schematic illustration of SCA by taking the diffusive flux of water 
component for example (the nanoparticle component follows the same procedure). 
Water, as well as the nanoparticles, diffuses outside the microgel towards the 
reservoir, and the diffusive flux relative to the crosslinked network has been guided 
by black arrow.  and  are the concentrations at the master node in the center 𝜙𝑤(𝑖) 𝜙𝑤,𝑓(𝑖)

of cell  and at the face of cell , respectively.𝑖 𝑖

The SCA is implemented by conducting the dimensionless process for the 
governing equations by invoking the simple variables as following

𝑟̃ =
𝑟

𝑅0
,          𝜏 = 𝑡

𝐷𝑐𝑤

𝑅0
2

,                                              (𝑆23)

where  is the initial radius of the fully swollen microgel, and the dimensionless 𝑅0

variable  inside the microgel meets . We consider a swollen microgel with 𝑟̃ 0 ≤ 𝑟̃ ≤ 1

size 300 µm, i.e.,  µm, for all the calculations.𝑅0 = 150

Consider 1-D configuration, as shown in Fig. S2, we first divide the domain 
ranging from the center to the border of the microgel into  cells with the uniform 𝑛

size, i.e., the concentric circular shells with a width per shell  (the gel ∆𝑟̃0(𝑖) = 1 𝑛

domain has been scaled by the initial radius ). Water flux and the nanoparticle flux 𝑅0

proceed across every cell as the microgel shrinks, while the polymer concentration 
occupying in each cell is conserved. As a result, the width of the cell  at the current 𝑖

state of time  is updated by .𝜏 ∆𝑟̃𝑖

As seen in Fig. S2 for the cross-section of the concentric circular shells, the current 

cell  has two faces located by point  (left) and  (right), and has also two sorts of 𝑖 𝑟̃𝑖 𝑟̃𝑖 + 1

concentrations: the one at the master node  which occupies in the cell , and 𝜙𝑤(𝑖) 𝑖

another one locates at the configured nodes, such as  at the left face and  𝜙𝑤,𝑓(𝑖) 𝜙𝑤,𝑓(𝑖 + 1)
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at the right face. Based on the derivations in the main text, the fluxes of water and the 
nanoparticle across the current face  are given by𝑖

𝐽̃𝑤(𝑖) = 𝐷̃11 �∂𝜙𝑤 

∂𝑟̃ |𝑖 + 𝐷̃12 �∂𝜙𝑐 

∂𝑟̃ |𝑖 ,                                   (𝑆24)

𝐽̃𝑐(𝑖) = 𝐷̃21 �∂𝜙𝑤 

∂𝑟̃ |𝑖 + 𝐷̃22 �∂𝜙𝑐 

∂𝑟̃ |𝑖 ,                                   (𝑆25)

where the dimensionless fluxes are obtained by  and , and 
𝐽̃𝑤(𝑖) =

𝑅0

𝐷𝑐𝑤
𝐽𝑤(𝑖) 𝐽̃𝑐(𝑖) =

𝑅0

𝐷𝑐𝑤
𝐽𝑐(𝑖)

the dimensionless diffusivity candidates are produced from the apparent diffusivity 

matrix  by  ( ). 𝐷 𝐷̃𝑖𝑗 = 𝐷𝑖𝑗 𝐷𝑐𝑤 𝑖,𝑗 = 1,2

The concentrations of water and the nanoparticle involved in the  ( ) in 𝐷̃𝑖𝑗 𝑖,𝑗 = 1,2

Eqs. S24 and S25 should be the value at the face , i.e.,  and . These 𝑖 𝜙𝑤,𝑓(𝑖) 𝜙𝑐,𝑓(𝑖)

concentrations at the face  can be approximately determined by the linear 𝑖

interpolation of the concertation at the master nodes in the neighboring cells  and , 𝑖 ‒ 1 𝑖

yielding

𝜙𝑤,𝑓(𝑖) =
∆𝑟̃𝑖 ‒ 1𝜙𝑤(𝑖) + ∆𝑟̃𝑖𝜙𝑤(𝑖 ‒ 1)

∆𝑟̃𝑖 ‒ 1 + ∆𝑟̃𝑖
,                                  (𝑆26)

𝜙𝑐,𝑓(𝑖) =
∆𝑟̃𝑖 ‒ 1𝜙𝑐(𝑖) + ∆𝑟̃𝑖𝜙𝑐(𝑖 ‒ 1)

∆𝑟̃𝑖 ‒ 1 + ∆𝑟̃𝑖
.                                    (𝑆27)

Moreover, the concentration gradients over the face  in Eqs. S24 and S25 can be 𝑖

given by the simple differential rule

�∂𝜙𝑤 

∂𝑟̃ |𝑖 =
𝜙𝑤(𝑖) ‒ 𝜙𝑤(𝑖 ‒ 1)

(∆𝑟̃𝑖 + ∆𝑟̃𝑖 ‒ 1) 2
,                                     (𝑆28)

�∂𝜙𝑐 

∂𝑟̃ |𝑖 =
𝜙𝑐(𝑖) ‒ 𝜙𝑐(𝑖 ‒ 1)

(∆𝑟̃𝑖 + ∆𝑟̃𝑖 ‒ 1) 2
.                                     (𝑆29)

We can subsequently solve the time evolution equations of water and the 
nanoparticle with respect to the current cell  at the current state  with the 𝑖 𝜏 + = 𝜏 + Δ𝜏

time interval Δ𝜏

𝜙𝑤(𝑖) (𝜏 + ) = 𝜙𝑤(𝑖) (𝜏) + 3∆𝜏
𝐽̃𝑤(𝑖)𝑟̃𝑖

2(𝜏 + ) ‒ 𝐽̃𝑤(𝑖 + 1)𝑟̃𝑖 + 1
2(𝜏 + )

𝑟̃𝑖 + 1
3(𝜏 + ) ‒ 𝑟̃𝑖

3(𝜏 + )
,            (𝑆30)

𝜙𝑐(𝑖) (𝜏 + ) = 𝜙𝑐(𝑖) (𝜏) + 3∆𝜏
𝐽̃𝑐(𝑖)𝑟̃𝑖

2(𝜏 + ) ‒ 𝐽̃𝑐(𝑖 + 1)𝑟̃𝑖 + 1
2(𝜏 + )

𝑟̃𝑖 + 1
3(𝜏 + ) ‒ 𝑟̃𝑖

3(𝜏 + )
.            (𝑆31)

Herein, as the deswelling proceeds, the width  of cell  must alter over ∆𝑟̃𝑖 = 𝑟̃𝑖 + 1 ‒ 𝑟̃𝑖 𝑖

time, meaning the “Soft-Cell” nature which differs from the conventional finite 
volume method, and the variation in size of current cell is determined by the 

conservation law of the crosslinked polymers retained in the cell  with respect to ∆𝑟̃𝑖
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that in the initial cell ∆𝑟̃0(𝑖)

(𝑟̃𝑖 + 1
3 ‒ 𝑟̃𝑖

3)𝜙𝑝(𝑖)(𝜏 + ) = (𝑟̃0(𝑖 + 1)
3 ‒ 𝑟̃0(𝑖)

3)𝜙𝑝0,                   (𝑆32)

where  and  are the polymer concentrations at the 𝜙𝑝(𝑖)(𝜏 + ) = 1 ‒ 𝜙𝑤(𝑖)(𝜏 + ) ‒ 𝜙𝑐(𝑖)(𝜏 + ) 𝜙𝑝0

current state and the initial state, respectively. Note that, all the variables at right side 
of Eq. S32 are the constants initially assigned, and particularly the first cell ( ) has 𝑖 = 1

been regarded as a complete sphere instead of the spherical shell ( ), hence the 𝑖 > 1

conservation law applied to this cell ( ) reads  with 𝑖 = 1 𝑟̃1
3𝜙𝑝(1) = 𝑟0(1)

3𝜙𝑝0

.𝜙𝑝(1) = 1 ‒ 𝜙𝑤(1) ‒ 𝜙𝑐(1)

Performing the time iteration calculations using above set of equations, i.e., the 
SCA, with the appropriate boundary conditions discussed in the main text, we can 

produce three desirable spatiotemporal variables ,  and  𝜙𝑤 (𝜏,𝑟̃) 𝜙𝑐 (𝜏,𝑟̃) 𝑟̃𝑛(𝜏) = 𝑅(𝜏) 𝑅0

simultaneously. As discussed earlier, the condition of moving microgel border  𝑅̇(𝑡)

can be directly accessed by  in which the elastic deformable behaviors of the 𝑑𝑟̃𝑛(𝜏) 𝑑𝜏

bulk microgel and multi-diffusions behaviors are both involved.
In addition, in our framework, the buffer release domain (BRD) has been 

considered to be a rationalized approach to avoid the demerit of “perfect sink 
condition” in the existing theories.10-13 As discussed in the main text, the governing 
equation in the BRD is a standard diffusion type to characterize the diffusion 
behavior of the nanoparticles towards the periphery of the BRD. Since the gels is 
absent in the ambient media, so, technically, we apply a normal scaling criterion upon 
the diffusion equation instead of SCA route by introducing the following 
dimensionless variables

𝑟̃ ‒ =
𝑟 ‒ ‒ (𝑅∞ ‒ 𝐻)

𝐻
,  𝜏 = 𝑡

𝐷𝑐𝑤

𝑅0
2

.                                  (𝑆33)

where  is assumed to be the periphery of the BRD, beyond which it is in 𝑅∞ = 2𝑅0

absence of nanoparticles, and  is the coordinate in the BRD, meeting , 𝑟 ‒ 𝑅(𝑡) ≤ 𝑟 ‒ ≤ 𝑅∞

in consequence,  varies in range , and  is a time-dependent 𝑟̃ ‒ 0 ≤ 𝑟̃ ‒ ≤ 1 𝐻(𝑡) = 𝑅∞ ‒ 𝑅(𝑡)

variable. 
Hence, we can write the diffusion equation Eq. 9 in the main text into its 

dimensionless form

∂𝐶𝑏𝑢𝑓

∂𝜏
+

∂𝐶𝑏𝑢𝑓

∂𝑟̃ ‒

1 ‒ 𝑟̃ ‒

𝐻̃
∂𝐻̃
∂𝜏

=
1

𝜔𝐻̃2( 2𝐻̃
𝑟̃ ‒ 𝐻̃ + 𝑚 ‒ 𝐻̃

∂𝐶𝑏𝑢𝑓

∂𝑟̃ ‒
+

∂2𝐶𝑏𝑢𝑓

∂𝑟̃ ‒
2 ),      (𝑆34)

where  with  being the viscosity of the fluid in the BRD, and 𝜔 = 𝐷𝑐𝑤 𝐷𝑏𝑢𝑓 = 𝜂𝑏𝑢𝑓 𝜂𝑤 𝜂𝑏𝑢𝑓

 is a dimensionless variable. Here, we assume , hence . 𝐻̃ = 𝐻 𝑅0 𝑅∞ = 2𝑅0 𝐻̃ = 2 ‒ 𝑅(𝜏) 𝑅0
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It is indicated that the BRD equivalently expands at the same rate at which the 
microgel shrinks, namely, the time-dependent variable  used in Eq. S34 can share 𝐻̃

the same information from the deswollen microgel determined by the SCA at every 
compute time interval . Therefore, such a dimensionless diffusion equation can be Δ𝜏

solved by using a regular finite differential algorithm. 
The dimensionless boundary conditions corresponding to the original ones stated in 

the main text for our problems are listed as following:

(i):  at the first cell , meaning the zero fluxes at the center of �∂𝜙𝑤 

∂𝑟̃ |𝑖 = 1 = �∂𝜙𝑐 

∂𝑟̃ |𝑖 = 1 = 0
𝑟̃1

microgel;

(ii):  at the periphery of the BRD, ;𝐶𝑏𝑢𝑓 = 0 𝑟̃ ‒ = 1

(iii): The polymer network at the microgel border  remains a deswelling 𝑟̃𝑛(𝜏)

equilibrium state, which indicates an equality in the chemical potentials of water 

inside and outside the microgel , i.e.,  with  being 𝜇𝑤(𝜙𝑤,𝜙𝑐) = 𝜇0 ∂𝑓̃ ∂𝜙𝑤 = 𝜇̃0 𝜇̃0 = 𝜇0 𝑘𝐵𝑇

the dimensionless value of chemical potential of water in the ambient media. Here, 

we assume such a dimensionless value  corresponding to the relative 𝜇̃0 =‒ 0.4

viscosity of the plasma in the ambient media .𝜔 = 𝜂𝑏𝑢𝑓 𝜂𝑤 = 2.4

(iv): Equality in the concentrations and the diffusion fluxes between the microgel and 
the ambient media at the shrinking microgel border, namely, 

 and .𝜙𝑐,𝑓(𝑛)(𝑟̃𝑛(𝜏),𝜏) = 𝐶𝑏𝑢𝑓(𝑟̃ ‒ = 0,𝜏)
‒ 𝐽̃𝑐(𝑖)(𝑟̃𝑛(𝜏),𝜏) =

1
𝜔𝐻̃�∂𝐶𝑏𝑢𝑓

∂𝑟̃ ‒
|𝑟̃ ‒ = 0 ‒

∂𝐻̃
∂𝜏

𝐶𝑏𝑢𝑓(𝑟̃ ‒ = 0,𝜏)

IV: Some supplementary results
According to the force balance equations (2) and (3) in the main text, we can obtain 

the total friction coefficients of water and the nanoparticles when they diffuse outside 
the microgel

𝜉̅𝑤 = 𝜉𝑤𝑐 + 𝜉𝑤𝑝

= 𝜎𝑤𝜂𝑤( 1
𝜅𝑤𝑐

+
1

𝜅𝑤𝑝
)                                              

≅𝜎𝑤𝜂𝑤( 𝐾𝑐

𝑅𝑐
2

+
4𝐾𝑔

𝑅𝑝
2 ),                                 (𝑆35)

 𝜉̅𝑐 = 𝜉𝑐𝑤 + 𝜉𝑐𝑝

=
𝑘𝐵𝑇

𝐷𝑐𝑤
(1 +

𝐷𝑐𝑤

𝐷𝑐𝑝
).                                        (𝑆36)

Then, using Einstein relationship, the bulk diffusivities of water and the 
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nanoparticles are expressed as  and , and their ratio is 𝐷̅𝑤𝑔 = 𝑘𝐵𝑇 𝜉̅𝑤 𝐷̅𝑐𝑔 = 𝑘𝐵𝑇 𝜉̅𝑐

obtained as 

𝐷̅𝑤𝑔

𝐷̅𝑐𝑔
=

4.5 𝜆𝑐

( 𝐾𝑐

𝜆𝑐
2

+
4𝐾𝑔

𝜆𝑝
2 )(1 + exp ((1 + (𝜆𝑝

𝜆𝑐
)2) ‒ 0.5

𝜙𝑝
‒ 0.75 )),             (𝑆37)

where the constant for nanoparticle is . The Kozeny constant  for the gel 𝐾𝑐 = 5 𝐾𝑔

network can be a large number generally obtained by experimental measurements. 

Here, we simply evaluate  by setting the diffusivity ratio  for 𝐾𝑔 = 5.5 × 105 𝐷̅𝑤𝑔 𝐷̅𝑐𝑔 ≈ 1

the moderate microgel with  nm and the nanoparticle size  nm (i.e., 𝑅𝑝 = 20 𝑅𝑐 = 5

 and ).𝜆𝑝 = 100 𝜆𝑐 = 25

As stated in the main text, the intrinsic elastic modulus of the microgel at the 

reference state, i.e., the collapsed state, is given by  with the binding 𝐺0 = 𝑚𝑘𝐵𝑇 𝜎𝑝

effect  and the unit volume of polymer coil . At the temperature 𝑚 = 100 𝜎𝑝 = 4𝜋𝑅𝑝
3 3

36 ℃, we show the relationship between the gyration radius of polymer coil  and 𝑅𝑝

the intrinsic elastic modulus  in Fig. S3.𝐺0

Fig. S3 The intrinsic elastic modulus  is plotted versus the gyration radius of 𝐺0

polymer coil  at the collapsed state of the microgel.𝑅𝑝

We compare the release dynamics between the U-MG and the F-MG in Fig. S4. As 
one can see, these two sorts of microgel display the different release behaviors in both 
cumulative release fraction and BRD-averaged concentration of the nanoparticle at 
the stages ranging from the earlier to the medium deswelling process, while they 
shear almost the same release behaviors at the later state of deswelling until the 
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deswelling equilibrium. As we expected, the F-MG exhibits the better performance in 
releasing the drugs than the U-MG since the polymers crosslink sparsely with the 
larger average mesh size in the fuzzy corona regime, which enables the higher 
efficiency for the drugs passing through the gel network.

Fig. S4. Comparisons of dynamics release behaviors (a) cumulative release fraction 
and (b) BRD-averaged concentration of drugs between the uniform microgel and the 

fuzzy microgel. Parameters used here are ,  kPa,  nm,𝐾𝑔 = 5.5 × 105 𝐺0 = 12.8 𝑅𝑐 = 5

, . 𝜔 = 2.4 𝜇̅0 =‒ 0.4
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