Support Information

Understanding The Role of Cl Doping in Oxygen Evolution Reaction on Cuprous Oxide by DFT

Hai-Hang Chen^a, Yongfei Ji*^b, and Ting Fan*^a

^a School of Chemistry and Chemical Engineering, South China University of Technology,

Guangzhou 510641, P. R. China

^b School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China

E-mail address: tingfan@scut.edu.cn; yongfeiji2018@gzhu.edu.cn

Gibbs Free Energy Calculation

The Gibbs reaction free energy change (ΔG) of each elementary step was based on the computational hydrogen electrode (CHE) model developed by Nørskov et al.¹ in which the energy of H⁺+e⁻ pair is related to the energy of the H₂ gas and the potential. The thermodynamic correction was considered by the frequency calculation. Table S1 lists the zero-point energy corrections and entropic contributions of gaseous and intermediates adsorption on the goal substrates computed from their vibration frequencies in harmonic approximation. The gas-phase molecules are treated as an ideal gas.

Based on the four-electron reaction mechanism of OER, the change of Gibbs free energy for each elementary step of OER (ΔG_1 , ΔG_2 , ΔG_3 , and ΔG_4) can be calculated by the following formulas:

$$\Delta G_1 = G(*OH) \tag{S1}$$

$$\Delta G_2 = G(*O) - G(*OH) \tag{S2}$$

$$\Delta G_3 = G(*OOH) - G(*O) \tag{S3}$$

$$\Delta G_4 = 4.92 \text{ eV} - G(*OOH) \tag{S4}$$

The step with the highest $\triangle G$ is the rate-determining step (RDS) of the OER is:

$$G^{OER} = \max[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4]$$
(S5)

The overpotential of OER can be evaluated from the following formula:

$$\eta = (G^{OER} / e) - 1.23 V$$
 (S6)

	ZPE(eV)	TS(eV)
H ₂ O(l)	0.56	0.67
H ₂ (g)	0.27	0.41
*OH	0.35	0
*O	0.05	0
*OOH	0.41	0

Table S1 Zero-point energy corrections and entropic contributions of gaseous and intermediates adsorption on substrates.

K-POINTS	Total energy (eV)	$\Delta E/atom (eV)$
(1,1,1)	-443.35487	
(2,2,1)	-443.56154	0.00172
(3,3,1)	-443.56167	0.00000
(4,4,1)	-443.56135	0.00000

Table S2 Convergence test of the K-POINTS for 2×2 supercell Cu₂O (111).

Table S3 Convergence test of the vacuum layer for 2×2 supercell Cu₂O (111).

Vacuum layer (nm)	Total energy (eV)	$\Delta E/atom (eV)$	
0.12	-443.58416		
0.13	-443.56154	0.00019	
0.14	-443.56907	0.00006	
0.15	-443.56778	0.00001	

Table S4 Convergence test of the plane-wave cutoff energy of Cu₂O (111) unit cell.

Plane-wave cutoff energy (eV)	Total energy (eV)	$\Delta E/atom (eV)$
510	-110.87961	
520	-110.88643	0.00006
530	-110.88575	0.00001

Table S5 Gibbs reaction free energy changes (ΔG) of each intermediates and elementary step and overpotential (η) on the active sites of different Cu₂O(111) surfaces. The numbers in red means that the potential-determining step ΔG . The numbers in brackets mean the coordination number of intermediates.

Active sites	∆G* _{OH} (eV)	ΔG_{*0} (eV)	△G* _{00H} (eV)	ΔG_1 (eV)	ΔG_2 (eV)	ΔG_3 (eV)	∆G₄ (eV)	η(V)
1- Cu ₂ O(111)	0.56 (2)	1.74 (3)	3.91 (2)	0.56	1.18	2.16	1.01	0.93
2- Cu ₂ O(111)	0.63 (2)	2.00 (3)	4.18 (2)	0.63	1.37	2.18	0.74	0.95
3- Cu ₂ O(111)	0.86 (2)	1.92 (3)	4.05 (2)	0.86	1.05	2.13	0.87	0.90
1-Cl- Cu ₂ O(111)	-0.34 (2)	1.16 (3)	3.27 (2)	-0.34	1.50	2.11	1.65	0.88
2-Cl- Cu ₂ O(111)	-0.12 (2)	1.26 (3)	3.31 (2)	-0.12	1.39	2.05	1.61	0.82
3-Cl- Cu ₂ O(111)	-0.37 (2)	1.20 (3)	3.11 (2)	-0.37	1.57	1.91	1.81	0.68
4-Cl- Cu ₂ O(111)	-0.23 (2)	1.17 (3)	3.28 (2)	-0.23	1.39	2.12	1.64	0.89
5-Cl- Cu ₂ O(111)	-0.12 (2)	1.26 (3)	3.32 (2)	-0.12	1.38	2.06	1.60	0.83
6-Cl- Cu ₂ O(111)	-0.32 (2)	1.16 (3)	3.21 (2)	-0.32	1.48	2.05	1.71	0.82
7-Cl- Cu ₂ O(111)	-0.12 (2)	1.68 (3)	3.32 (2)	-0.12	1.81	1.63	1.60	0.58

8-Cl- Cu ₂ O(111)	-0.32 (2)	1.15 (3)	3.21 (2)	-0.32	1.48	2.06	1.71	0.83
9-Cl- Cu ₂ O(111)	0.19 (2)	1.73 (3)	3.58 (2)	0.19	1.54	1.84	1.34	0.61
10-Cl- Cu ₂ O(111)	0.08 (2)	1.54 (3)	3.54 (2)	0.08	1.46	1.99	1.38	0.76
11-Cl- Cu ₂ O(111)	0.04 (2)	1.26 (3)	3.53 (2)	0.04	1.22	2.27	1.39	1.04
1-V _{Cu} - Cu ₂ O(111)	1.77 (2)	2.83 (3)	5.07 (2)	1.77	1.06	2.24	-0.15	1.01
1'-V _{Cu} - Cu ₂ O(111)	1.79 (3)	2.83 (3)	5.31 (3)	1.79	1.03	2.48	-0.39	1.25
2-V _{Cu} - Cu ₂ O(111)	1.50 (2)	3.25 (2)	4.80 (2)	1.50	1.75	1.55	0.12	0.52
1-V _{Cu} -Cl- Cu ₂ O(111)	1.25 (2)	2.85 (2)	4.70 (2)	1.25	1.60	1.84	0.22	0.61
1'-V _{Cu} -Cl- Cu ₂ O(111)	1.58 (3)	2.78 (3)	4.74 (3)	1.58	1.20	1.95	0.18	0.72
2-V _{Cu} -Cl- Cu ₂ O(111)	1.57 (2)	3.26 (2)	4.82 (2)	1.57	1.69	1.55	0.10	0.46
3-V _{Cu} -Cl- Cu ₂ O(111)	1.48 (2)	3.21 (2)	4.71 (2)	1.48	1.73	1.50	0.21	0.50
4-V _{Cu} -Cl- Cu ₂ O(111)	1.74 (2)	2.81 (3)	5.02 (2)	1.74	1.07	2.21	-0.10	0.98
5-V _{Cu} -Cl- Cu ₂ O(111)	1.48 (2)	3.21 (2)	4.80 (2)	1.48	1.72	1.59	0.12	0.49

Table S6 Interaction/distortion analysis after OH/OOH adsorption on sites 1 and 2 of V_{Cu} -Cu₂O(111) and V_{Cu} -Cl-Cu₂O(111) (eV). The numbers in brackets mean the coordination number of intermediates.

Surface	Intermediates	E _{dist} (Surf)	Edist(OH/O/OOH)	Eint	E _{ads}
$1-V_{Cu}-Cu_2O(111)$	*OH(2)	0.31	0.00	-2.22	-1.91
$1-V_{Cu}-Cu_2O(111)$	*O(3)	0.59	0.00	-3.70	-3.10
1-V _{Cu} -Cu ₂ O(111)	*OOH(2)	0.22	0.18	-0.80	-0.40
$1-V_{Cu}-Cl-Cu_2O(111)$	*OH(2)	1.42	0.00	-3.86	-2.44
$1'-V_{Cu}-Cl-Cu_2O(111)$	*O(3)	0.64	0.00	-3.79	-3.15
$1-V_{Cu}-Cl-Cu_2O(111)$	*OOH(2)	1.36	0.30	-2.39	-0.73
2-V _{Cu} -Cu ₂ O(111)	*OH(2)	0.28	0.00	-2.46	-2.18
2-V _{Cu} -Cu ₂ O(111)	*O(2)	0.54	0.00	-3.22	-2.68
2-V _{Cu} -Cu ₂ O(111)	*OOH(2)	0.20	0.16	-1.02	-0.66
2-V _{Cu} -Cl-Cu ₂ O(111)	*OH(2)	0.32	0.00	-2.44	-2.11
2-V _{Cu} -Cl-Cu ₂ O(111)	*O(2)	0.47	0.00	-3.14	-2.67
2-V _{Cu} -Cl-Cu ₂ O(111)	*OOH(2)	0.21	0.15	-1.02	-0.65

Fig. S1 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 1 of $Cu_2O(111)$.

Fig. S2 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 2 of $Cu_2O(111)$.

Fig. S3 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 3 of $Cu_2O(111)$.

Fig. S4 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 1 of $Cl-Cu_2O(111)$.

Fig. S5 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 2 of Cl-Cu₂O(111).

Fig. S6 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 3 of Cl-Cu₂O(111).

Fig. S7 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 4 of $Cl-Cu_2O(111)$.

Fig. S8 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 5 of Cl-Cu₂O(111).

Fig. S9 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 6 of Cl-Cu₂O(111).

Fig. S10 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 7 of Cl-Cu₂O(111).

Fig. S11 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 8 of $Cl-Cu_2O(111)$.

Fig. S12 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 9 of Cl-Cu₂O(111).

Fig. S13 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 10 of Cl-Cu₂O(111).

Fig. S14 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 11 of Cl-Cu₂O(111).

Fig. S15 The optimized adsorbed intermediates of (a) *OH(2), (b) *O(3), (c) *OOH(2), (d) *OH(3), and (e) *OOH(3) on active site 1 of $V_{Cu}-Cu_2O(111)$. The coordinated O* atoms are in yellow in side views.

Fig. S16 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 2 of V_{Cu} -Cu₂O(111).

Fig. S17 The optimized adsorbed intermediates of (a) *OH(3), (b) *O(3), (c) *OOH(3), (d) *OH(2), (e) *O(2) and (d) *OOH(2) on active site 1 of V_{Cu} -Cl-Cu₂O(111). The coordinated O* atoms are in yellow in side views.

Fig. S18 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 2 of V_{Cu} -Cl-Cu₂O(111).

Fig. S19 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 3 of V_{Cu} -Cl-Cu₂O(111).

Fig. S20 The optimized adsorbed intermediates of (a) *OH(2), (b) *O(3), and (c) *OOH(2) on active site 4 of V_{Cu}-Cl-Cu₂O(111). The coordinated O* atoms are in yellow in side views.

Fig. S21 The optimized adsorbed intermediates of (a) *OH, (b) *O, and (c) *OOH on active site 5 of V_{Cu} -Cl-Cu₂O(111).

surface	*OH charge (e)
3-Cu ₂ O(111)	-0.559
7-Cl-Cu ₂ O(111)	-0.561
2-V _{Cu} -Cu ₂ O(111)	-0.475
$2-V_{Cu}-Cl-Cu_2O(111)$	-0.505

Table S7 Bader charge of OH absorbing at the most active site on $Cu_2O(111)$, $Cl-Cu_2O(111)$, $V_{Cu-}Cu_2O(111)$ and V_{Cu} -Cl-Cu₂O(111).

Fig. S22 The projected density of states (PDOS) of OH* absorbing at the most active site on (a) $Cu_2O(111)$, (b) $Cl-Cu_2O(111)$, (c) $V_{Cu}-Cu_2O(111)$ and (d) $V_{Cu}-Cl-Cu_2O(111)$, where the Fermi energy was set to zero (dashed line).

surface	implicit solvation model	∆G _{*OH} (eV)	ΔG_{*0} (eV)	∆G _{*OOH} (eV)	η (V)
$3_{-}Cu_{2}O(111)$	without	0.86	1.92	4.05	0.90
3-Cu ₂ O(111)	with	0.64	1.70	3.48	0.54
7-Cl-Cu ₂ O(111)	without	-0.12	1.68	3.32	0.58
	with	-0.39	1.40	2.93	0.76
2-V _{Cu} -Cu ₂ O(111)	without	1.50	3.25	4.80	0.52
	with	1.27	2.97	4.42	0.47
2-V _{Cu} -Cl-Cu ₂ O(111)	without	1.57	3.26	4.82	0.46
	with	1.43	3.03	4.53	0.36

Table S8 Comparison of Gibbs reaction free energy changes (ΔG) of each elementary step and overpotential (η) on the active sites of different Cu₂O(111) surfaces with or without an implicit model.

Reference

1 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *The Journal of Physical Chemistry B*, 2004, **108**, 17886-17892.