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1. Computing Hubbard U from linear response 

A linear response approach1 is employed to calculate the effective Hubbard U. The 

basic idea of this approach is the observation that the DFT total energy is a quadratic 

function of on-site occupations2. By the rotationally invariant formulation3, the total 

energy functional of DFT + U can be written as 

                      DFT+U DFT U '[ ] [ ] [ ]l
mmE n E n E n   ,  

where EDFT is a standard approximate DFT functional and EU is the Hubbard correction, 

according to the simplified functional given by 

             U [ (1 )] [ (1 )]
2 2

effl l l l

l l

UU J
E Tr Tr   

 


    n n n n .  

By the linear-response U approach, the response function can be calculated as χI = 

∂nI/∂αI, where αI represents the “strength” of the perturbation on atom I (usually chosen 

small enough to maintain a linear response regime) and nI is the occupation. The 

interacting (χ) and the non-interacting (χ0) density response functions of the system with 

respect to localized perturbations are first calculated. Then the Hubbard U can be 

obtained by Ueff = 1/  - 1/  .  

VASP (version ≥ 5) can perform the linear response calculation with LDAU = T 

and LDAUTYPE = 3. In this case, LDAUU and LDAUJ should be both set as αI, and 

nI will be printed with LDAUPRINT = 2. The POSCAR of TbMn6Sn6 primitive cell 

reads (for the POSCAR file, see Supplementary II) 

 0

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



2 
 

 

TbMn6Sn6 

 1.00000000000000 

  5.4465354000000001    0.0000000000000000    0.0000000000000000 

-2.7232677000000001    4.7168380000000001    0.0000000000000000 

 0.0000000000000000    0.0000000000000000    8.9694351999999995 

 Tb   Sn   Mn 

   1    6     6 

Direct 

 -0.0000000000000000  0.0000000000000000  -0.0000000000000000 

  0.3333333340000024  0.6666666679999977   0.5000000000000000 

  0.6666666109999966  0.3333333089999968   0.5000000000000000 

  0.3333333340000024  0.6666666679999977  -0.0000000000000000 

  0.6666666109999966  0.3333333089999968  -0.0000000000000000 

 -0.0000000000000000  0.0000000000000000   0.6662294578627622 

 -0.0000000000000000  0.0000000000000000   0.3337705681372400 

  0.5000000000000000  0.0000000000000000   0.7515951515947960 

  0.5000000000000000  0.0000000000000000   0.2484048484052040 

  0.0000000000000000  0.5000000009999965   0.7515951515947960 

 -0.0000000000000000  0.5000000009999965   0.2484048484052040 

  0.5000000000000000  0.5000000009999965   0.7515951515947960 

  0.5000000000000000  0.5000000009999965   0.2484048484052040 

 

To calculate the linear response of one Tb atom in TbMn6Sn6, the parameters in the 

INCAR,are 

 

    LDAU = T ; LDAUTYPE = 3 

    LDAUL =    3   -1     -1 

    LDAUU =   ***   0     0 

    LDAUJ =   ***   0     0 

    LDAUPRINT = 2 ; LORBIT = 11 

 

in which *** denotes the given αI for the Tb 4f orbital (in eV). The operation starts from 

a usual calculation with αI = 0. With the generated CHGCAR and WAVECAR, the 

interacting (χ) density response calculation runs with given αI and ISTART = 1, 

ICHARG = 1. nI can be found in the OUTCAR. For the non-interacting (χ0) calculation 
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with given αI, use ISTART = 1, ICHARG = 11 to keep the wavefunctions fixed. Fig. 

S1 shows the results, in which n (n0) is the occupation of interacting (non-interacting) 

calculation, respectively. By fitting the slopes, χ = 3.99 eV-1 and χ0 = 0.30 eV-1, and 

then Ueff = 1/χ - 1/χ0 = 3.1 eV, are obtained.  

 

 
Fig. S1 The interacting (black) and non-interacting density response functions of Tb 4f orbital in 

TbMn6Sn6.  
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2. Atomic-orbital-resolved energy bands 

Fig. S2 shows the energy bands of TbMn6Sn6 resolved by Tb and Mn atomic 

orbitals. The color shows the proportion of Tb / Mn atomic orbitals in the band states. 

We can see narrow Tb 4f bands near the Fermi level. Other bands near the Fermi level 

are mainly Mn 3d bands.  

 

 

Fig. S2 The energy bands of TbMn6Sn6 resolved by Tb and Mn atomic orbitals. The Fermi level is 

set zero.  
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3. The Dirac points 

To show the Dirac points generated by kagome Mn arrangement, the energy bands 

near the K point are enlarged in Fig. S3. We can see one Dirac cone below the Fermi 

level, and two Dirac cones above the Fermi level. Small gaps are opened by spin-orbit 

coupling.  

 

 

Fig. S3 The energy bands of TbMn6Sn6 near the K point. The spin-polarization of each state is 

resolved. The Fermi level is set zero.  
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4. Chemical potential of atomic layers in TbMn6Sn6 

TbMn6Sn6 has a layered crystal structure, and its unit cell structure is ABCB 

stacking. In order to simplify the calculation, the chemical potential of each layer of 

TbMn6Sn6 is evaluated (instead of evaluating the chemical potential of each element), 

and only the interactions between the nearest and second-nearest layers are considered. 

Let’s use 𝐼  represents the influence of layer B on the chemical potential of layer A. 

𝐼  , 𝐼  , 𝐼  , 𝐼  , 𝐼   and 𝐼   have similar meaning. The chemical potentials of 

layers A, B, and C are 

                        𝜇 𝜇 2𝐼 2𝐼  

                      𝜇 𝜇 𝐼 𝐼 2𝐼      (S1)  

                        𝜇 𝜇 2𝐼 2𝐼  

Here, 𝜇 , 𝜇  and 𝜇  represent the chemical potentials of the A, B and C layers 

without interactions, respectively. Suppose the symmetric relationships 𝐼 𝐼  , 

𝐼 𝐼 , 𝐼 𝐼 . Under these assumptions, the free energy of TbMn6Sn6 unit cell 

reads 

             𝐸 𝜇 2𝜇 𝜇 4𝐼 4𝐼 4𝐼 4𝐼   (S2) 

The free energy of TbMn6Sn6 unit cell without one A layer reads 

                 𝐸   2𝜇 𝜇 4𝐼 4𝐼  (S3) 

The free energy of TbMn6Sn6 unit cell without one B layer reads 

              𝐸  𝜇 𝜇 𝜇 2𝐼𝐴𝐵 2𝐼𝐵𝐶 4𝐼𝐴𝐶 (S4) 

The free energy of TbMn6Sn6 unit cell without one C layer reads 

                𝐸   𝜇 2𝜇 4𝐼 4𝐼  (S5) 

The free energy of TbMn6Sn6 unit cell without one A and one B layer reads 

                     𝐸  𝜇 𝜇 2𝐼  (S6) 

The free energy of TbMn6Sn6 unit cell without one B and one C layer reads 

                     𝐸   𝜇 𝜇 2𝐼  (S7) 

The free energy TbMn6Sn6 unit cell without one A and one C layer reads 

                      𝐸  2𝜇 4𝐼  (S8) 
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The relationships S2~S8 can be summarized as 
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 (S9)  

DFT calculations are employed to calculate the above seven energy values on the left 

(𝐸  = -89.94 eV, 𝐸    = -63.01 eV, 𝐸    = -55.20 eV,  𝐸    

= -77.19 eV, 𝐸    = -34.39 eV, 𝐸    = -43.49 eV, 𝐸    = -

52.82 eV). Using the inverse of the matrix, 𝜇 = -12.15 eV, 𝜇 = -25.23 eV, 𝜇 =  -

8.13 eV, 𝐼 = -3.06 eV, 𝐼 = -0.52 eV, 𝐼 = -0.64 eV, 𝐼 = -0.59 eV can be obtained. 

Finally, the chemical potentials 𝜇 = -19.54 eV, 𝜇 = -29.98 eV and 𝜇 = -10.44 eV of 

the A, B and C layers are calculated by Eq. (S1).  
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5 The structure of Sn bulk 

Sn bulk has various phases including α-Sn, β-Sn, γ-Sn, simple hexagonal (sh), 

hexagonal close packed (hcp), body-centered tetragonal (bct), body-centered cubic 

(bcc), and face-centered cubic (fcc). At normal pressures, the three stable solid phases 

are α-Sn, β-Sn and γ-Sn (for the structures, see Fig. S4(a), (b) and (c)), for which phase 

transition occurs at different temperatures. At low temperatures, the stable phase is α-

Sn (diamond-like). At normal temperatures, the stable phase is β-Sn. At the 

temperatures close to the melting point (305 K), it changes to γ-Sn. We use γ-Sn to 

approximately represent the liquid phase. The POSCAR is listed below (for the 

POSCAR file, see Supplementary II).  

 
Gamma-Sn 
 1.00000000000000 
  5.7463446548044628    0.0000000000000000    0.0000000000000000 

 0.0000000000000000    6.1331794691422576    0.0000000000000000 
 0.0000000000000000    0.0000000000000000    3.2280194327051928 
 Sn 
  4 
Direct 
 -0.0000000000000000  0.0000000000000000  -0.0000000000000000 
  0.0000000000000000  0.5000000000000000   0.0000000000000000 
  0.5000000000000000  0.0000000000000000   0.5000000000000000 
  0.5000000000000000  0.5000000000000000   0.5000000000000000 

 

Fig. S4 The structures of (a) α-Sn, (b) β-Sn and (c) γ-Sn. The periodic boundary is shown by dashed 

liens.  
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6 HER on the (001) surfaces of TbMn6Sn6 

Fig. S5 shows the free energy profile of HER on the surfaces A, B1 and C of 

TbMn6Sn6. The computational hydrogen electrode model sets the free energies of H+ + 

e and H2 as zero. On the surfaces A, B1 and C, the onset potentials of HER are -0.79,  

-0.36 and -0.55 V, respectively.  

 

 
Fig. S5 The reaction free energy of hydrogen evolution reaction on the surfaces A, B1 and C of 

TbMn6Sn6.  


