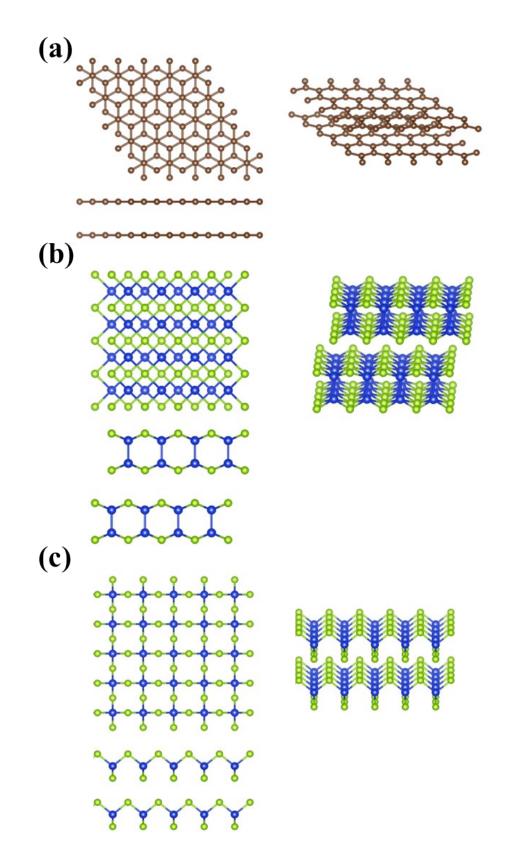
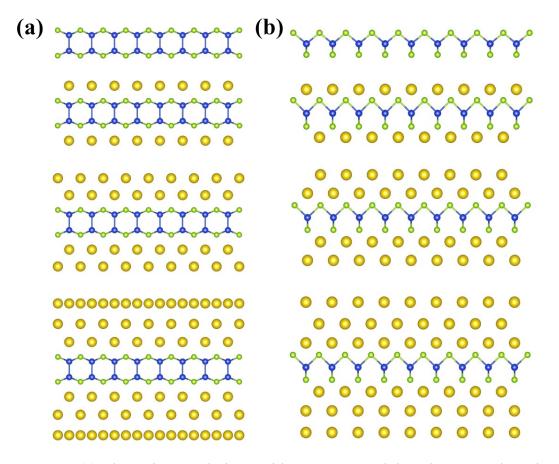
Supporting Information


Theoretically Evaluating Two-Dimensional Tetragonal Si₂Se₂

and SiSe₂ Nanosheets as Anode Materials for Alkali Metal-Ion


Batteries

Jiaming Wang^{1, 2}, Hao Wu^{1, 3}, Zhixiao Liu^{4, *}, Min Pan^{1, *}, Zheng Huang², Liu Pan², Lei Han^{1, 3}, Kun Zhang^{1, 3}, Yong Zhao¹, Huiqiu Deng⁵ ¹Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, China ²School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, China ³School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China ⁴College of Materials Science and Engineering, Hunan University, Changsha 410082, China ⁵School of Physics and Electronics, Hunan University, Changsha 410082, China

*Correspondence:<u>zxliu@hnu.edu.cn</u> (Z. Liu); <u>mpan@swjtu.edu.cn</u> (M. Pan)

Figure S1: (a) Stable stacking configuration of two layers of graphene. (b) Stable stacking configuration of two layers of Si_2Se_2 . (c) Stable stacking configuration of two layers of $SiSe_2$.

Figure S2: (a) Clean Si_2Se_2 and Si_2Se_2 with one-, two- and three-layer Na adsorption on both sides. (b) Clean $SiSe_2$ and $SiSe_2$ with one-, two- and three-layer Na adsorption on both sides.