Supplementary Material: Low cost bimetallic $AuCu_3$ tetramer on Ti_2CO_2 MXene as an efficient catalyst for CO oxidation: A theoretical prediction

Aswathi Mohan T^{1, a)} and Prasenjit Ghosh^{2, b)} ¹⁾Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra , India ²⁾Department of Physics, Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra , India

^{a)}Electronic mail: aswathi.mohan@students.iiserpune.ac.in

^{b)}Electronic mail: pghosh@iiserpune.ac.in

Cluster composition Adsorption energy (eV)		
Cu_4	-3.56	
Au_4	-2.08	
AuCu_3	-3.41	
$\mathrm{Au}_2\mathrm{Cu}_2$	-2.23	
Au ₃ Cu	-2.31	

TABLE S1. Adsorption energy of bimetallic clusters on $\rm Ti_2\rm CO_2$ MX ene.

TABLE S2. Adsorption energy of CO and O_2 on $AuCu_3/Ti_2CO_2$.

Species	Adsorption energy (eV)
CO	-1.26
O_2	-0.83
$CO + O_2$	-2.16

MvK mechanism: A crucial factor decisive of this path is oxygen vacancy formation energy. For Ti_2CO_2 , it was found to be 3.27 eV¹, which is comparable to substrates like rutile $TiO_2(110)$ (around 3.00 eV) that is known for facile oxygen vacancy formation². Hence to investigate the MvK mechanism for CO oxidation, we take the most stable CO adsorption geometry (**IS4** in Fig. S3). From the reaction thermodynamic studies, we find that CO attacks an O atom from the top layer of Ti_2CO_2 , forming a CO₂ intermediate (**INT12**), 2.23 eV higher in energy. The next step of CO₂ desorption is also endothermic, making the whole mechanism unlikely to happen.

Cycle	Mechanism	Reaction barrier (eV)
First	LH	0.56
Second	ER	0.37
Second	LH	0.57

TABLE S3. Reaction barrier for CO oxidation on AuCu₃/Ti₂CO₂.

FIG. S1. Stable higher energy structures of a)-c) Au₄, d)-f) AuCu₃, g)-i) Au₂Cu₂ and j)-l) Au₃Cu clusters deposited on Ti₂CO₂ MXene. Relative energy with respect to the corresponding most stable geometry given in eV.

REFERENCES

¹L. Xiao-Hong, S. Xiang-Ying and Z. Rui-Zhou, *RSC advances*, 2019, 9, 27646–27651.
²M. V. Ganduglia-Pirovano, A. Hofmann and J. Sauer, *Surface science reports*, 2007, 62, 219–270.

FIG. S2. Stable higher energy structures of a)-b) CO, c)-e) O_2 and f)-i) CO and O_2 co-adsorption on AuCu₃/Ti₂CO₂. Relative energy with respect to the corresponding most stable geometry given in eV.

FIG. S3. First cycle of CO oxidation via MvK mechanism on $AuCu_3/Ti_2CO_2$. The reaction energies in eV are marked above the arrow for each step.

FIG. S4. Reaction energy profile of **IS1** to **INT1**.

FIG. S5. Reaction energy profile of **INT1** to **INT2**.

FIG. S6. Reaction energy profile of **INT2** to **INT3**.

FIG. S7. Reaction energy profile of **INT3** to **FS1**.

FIG. S8. Reaction energy profile of ${\bf IS2}$ to ${\bf INT4}.$

FIG. S9. Reaction energy profile of INT4 to INT5.

FIG. S10. Reaction energy profile of ${\bf INT4}$ to ${\bf INT5}.$

FIG. S11. Reaction energy profile of ${\bf IS3}$ to ${\bf INT7}.$

FIG. S12. Reaction energy profile of **INT7** to **INT8**.

FIG. S13. Reaction energy profile of **INT8** to **INT9**.

FIG. S14. Reaction energy profile of INT9 to INT10.

FIG. S15. Reaction energy profile of INT10 to INT11.

FIG. S16. Reaction energy profile of ${\bf INT11}$ to ${\bf FS3}.$