Electronic Supplementary Information

Optimal molecule-matching co-sensitization system for the

improvement of photovoltaic performances of DSSCs

Yongliang Liu^a, Shengbo Zhu^{a,*}, Wei Li^a, Yilin Su^a, Hongwei Zhou^a, Ran Chen^b,

Weixing Chen^a, Wenzhi Zhang^a, Xiaoling Niu^a, Xinbing Chen^b, Zhongwei An^b

^a Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province; School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China

^b Key Laboratory of Applied Surface and Colloid Chemistry (MOE); International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China.

Corresponding Authors

Shengbo Zhu

E-mail: zhushengbo@xatu.edu.cn

1. Molecular structure confirmation

Fig. S1. (a) 1 H NMR and (b) 13 C NMR of compound 4OBA.

Fig. S2. (a) 1 H NMR and (b) 13 C NMR of compound 80BA.

Fig. S3. (a) ¹H NMR and (b) ¹³C NMR of compound **12OBA**.

Fig. S4. HRMS of 4OBA.

Fig. S5. HRMS of 80BA.

Fig. S6. HRMS of 12OBA.

Fig. S7. FT-IR spectra of (a) 4OBA, (b) 8OBA and (c) 12OBA.

2. Thermal stability

It is crucial to study the thermal behavior of sensitizers, and good thermal behavior is a prerequisite for organic materials used in photovoltaic applications. The thermal properties of the co-sensitizers **nOBA** (n=4, 8 and 12) are studied by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) at the heating rate of 10 °C min⁻¹ under an argon atmosphere. The DSC and TGA curves of **nOBA** (n=4, 8 and 12) are shown in Fig. S8 and S9, respectively. All the co-sensitizers **nOBA** (n=4, 8 and 12) exhibit satisfactory thermal stability with high thermal decomposition (T_d) temperatures at 255 °C (**4OBA**), 280 °C (**8OBA**) and 310° C (**12OBA**) (*Mater. Chem. Front.*, 2022, **6**, 580-592; *Phys. Chem. Chem. Phys.*, 2020, **22**, 23169-23184; *Thermochim. Acta*, 2006, **440**, 181-187). The test results are as follows:

Fig. S8. DSC curves of (a) 4OBA, (b) 8OBA and (c) 12OBA.

Fig. S9. TGA curves of (a) 4OBA, (b) 8OBA and (c) 12OBA.

3. Application evaluation

Fig. S10. (a) V_{oc} , (b) J_{sc} and (c) FF of DSSCs under different irradiations.

In addition to testing the photovoltaic parameters under different irradiation conditions, their durability was also tested. The following figure shows the 1000 h durability of the DSSC devices. The results are shown in Fig. S11 and Table S3.

Fig. S11. Durability of (a) V_{oc} , (b) J_{sc} , (c) *FF* and (d) PCE of DSSCs based on NP-1, NP-1@40BA, NP-1@80BA, NP-1@120BA for 1000 h.

Table S1 The length (L), height (H) and width (W) of the three-dimensional structures,

Dye	$L(\text{\AA})$	H(Å)	$W(\text{\AA})$	H/W
NP-1	21.67	10.07	4.64	2.17
40BA	17.91	5.61	3.38	1.66
80BA	22.93	6.05	3.42	1.77
12OBA	28.33	6.31	3.31	1.91

and the ratio of H and W.

Table S2 Photovoltaic	performances	of DSSCs under	different irradiation.
-----------------------	--------------	----------------	------------------------

Devices	Bias Light Intensity / mW cm ⁻²	$V_{\rm oc}$ / mV	$J_{\rm sc}$ / mA cm ⁻²	FF / %	PCE / %
NP-1	20	638.72	1.87	74.50	0.89
	40	662.19	3.74	72.80	1.80
	60	666.49	5.18	69.61	2.40
	80	671.23	6.03	76.36	3.09
	100	690.18	8.77	70.42	4.26
NP-1@4OBA	20	621.80	1.93	72.00	0.86
	40	639.81	3.82	69.33	1.69
	60	657.26	5.67	76.38	2.84
	80	667.19	5.96	77.10	3.06
	100	676.13	9.04	74.43	4.55
NP-1@8OBA	20	627.67	1.92	68.09	0.82
	40	675.87	3.89	76.43	2.01
	60	695.48	5.86	73.14	2.98
	80	673.55	6.81	71.24	3.27
	100	697.11	8.94	69.94	4.36
NP-1@12OBA	20	639.06	1.83	75.91	0.89
	40	663.37	3.62	74.49	1.79
	60	676.09	5.26	73.25	2.60
	80	681.62	6.10	72.45	3.01
	100	680.84	8.47	70.64	4.07

Table S3 The length (L), Durability data of V_{oc} , J_{sc} , FF, PCE for DSSCs based onNP-1, NP-1@40BA, NP-1@80BA, NP-1@120BA for 1000 h.

Devices	Time / h	$V_{\rm oc}$ / mV	$J_{\rm sc}$ / mA cm ⁻²	FF / %	PCE / %
NP-1	0	665.35	8.46	72.92	4.10
	24	690.18	8.77	70.42	4.26
	72	685.97	7.74	73.53	3.91
	144	671.44	8.31	64.09	3.58
	648	645.70	7.08	77.02	3.52
	1000	614.35	7.48	76.02	3.50
NP-1@4OBA	0	666.20	8.46	74.75	4.21
	24	676.13	9.04	74.43	4.55
	72	696.49	8.83	70.82	4.35
	144	675.16	9.01	70.25	4.28
	648	648.37	7.45	74.71	3.61
	1000	611.19	7.74	76.25	3.61
NP-1@8OBA	0	687.78	8.40	70.57	4.08
	24	697.11	8.94	69.94	4.36
	72	688.77	7.74	74.52	3.97
	144	686.27	7.41	70.56	3.59
	648	656.49	6.50	75.67	3.23
	1000	604.41	6.92	74.81	3.13
NP-1@12OBA	0	664.40	8.54	72.26	4.10
	24	679.01	8.41	73.71	4.21
	72	694.32	8.41	69.01	4.03
	144	674.58	8.30	71.12	3.98
	648	651.94	7.36	75.96	3.65
	1000	623.89	7.72	75.11	3.62