ELECTRONIC SUPPORTING INFORMATION

Quantitative kinetics for the atmospheric reactions of Criegee intermediates with acetonitrile

Yu-Qiong Zhang, ^{a,b} Yu Xia,^a Bo Long^{*a,b}

^aCollege of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang

550025, China

^bCollege of Materials Science and Engineering, Guizhou Minzu university, Guiyang

550025, China

TABLE OF CONTENTS

Computational details for pressure-dependent rate constants of R1.	S-3
Computational details for high-pressure-limit rate constants of R1, R2 and R3.	S-3
Table S1. Scale factors applied to vibrational frequencies.	S-4
Table S2. Mean unsigned deviations of classical barrier heights and classical	
reaction energies.	S-4
Table S3. Mean unsigned deviations of relative zero-point vibrational energies.	S-4
Table S4. The relative enthalpies at 0 K for the R1 reaction at different methods.	S-5
Table S5. High-pressure-limit rate constant k_1 and transmission coefficients,	
and activation energies of the R1 reaction.	S-5
Table S6. High-pressure-limit rate constant k_2 and transmission coefficients	
for the R2 reaction.	S-6
Table S7. High-pressure-limit rate constant k_3 and transmission coefficients	
for the R3 reaction.	S- 7
Table S8. Parameters used to fit high-pressure limit rate constant k_1 , k_2 and k_3 .	S- 7
Table S9. Pressure-dependent $k_1(T, p)$ of the R1 as a function of temperature	
and pressure by SS-QRRK theory.	S-8
Table S10. The rate ratio between $OH + CH_3CN$ and R1 for various concentrations.	S-9
Table S11. The rate ratio between $OH + CH_3CN$ and R2 for various concentrations.	S-10
Table S12. Frequencies and zero-point vibrational energies for R1 reaction.	S-11
Table S13. Frequencies and zero-point vibrational energies for R2 reaction.	S-15
Table S14. Frequencies and zero-point vibrational energies for R3 reaction.	S-18
Table S15. Cartesian coordinates and absolute energies for R1 reaction.	S-21
Table S16. Cartesian coordinates (Å) and absolute energies for R2 reaction.	S-25
Table S17. Cartesian coordinates (Å) and absolute energies for R3 reaction.	S-27

^{*}corresponding author, E-mail: <u>longbo@gzmu.edu.cn</u>(Bo Long)

Table S18. The reaction classic energy barrier for R1, R2 and R3 reactions.	S-28
Figure S1. The enthalpies profile of the M2 isomerization channels for R2 reaction.	S-29
Figure S2. Optimized M11-L/MG3S geometries for the R1 and R2 reactions	
of the acetonitrile addition to the Criegee intermediates.	S-30

Computational details for pressure-dependent rate constants of R1.

For the R1 reaction, we calculate the pressure-dependent rate constants using systemspecific quantum Rice-Ramsperger-Kassel (SS-QRRK).^{1,2,3} The F_E is computed based on the numerically integrated Whitten-Rabinovitch approximation.⁴ The collision efficiency is computed based on the exponential gap model (also called the exponential down model), with the energy transfer parameter $\langle \Delta E \rangle_{down} = 200$ cm⁻¹.

molecules	σ (in Å)	ε (in K)	Reference
N ₂ bath gas	3.74	82	5
CH ₂ OO	3.79	520	6
CH ₃ CN	4.37	491.6	7
M1 ^a	4.08	505.6	

The van der Waals parameters used to calculate the collision rates are as follows:

^aWhere van der Waals parameters of M1 is obtained by fitting the following two formulas:

$$\sigma = \frac{\sigma_1 \sigma_2}{2} \qquad (1) \qquad \qquad \varepsilon = \sqrt{\varepsilon_1 \varepsilon_2} \qquad (2)$$

 σ is the hard-core diameter, and ε is a measure of the strength of the spherically symmetric part of the perturbation.

TST for high-pressure-limit rate constants of R1, R2 and R3.

Title reactions can be expressed as:

SCI + CH₃CN
$$\xleftarrow{k_1}$$
 C1 (SCI···CH₃CN) $\xrightarrow{k_2}$ M

Where C1 is a pre-reactive complex and M is the products of these reactions. By the Steady-State Approximation, as well as introducing the assumption of $k_2 \ll k_{-1}$, we can get an expression for the rate constants:

$$\frac{d[SCI\cdots CH_3CN]}{dt} = k_1[SCI][CH_3CN] - k_1[SCI\cdots CH_3CN] - k_2[SCI\cdots CH_3CN] = 0$$

$$[SCI\cdots CH_3CN] = \frac{k_1}{k_{-1} + k_2}[SCI][CH_3CN] \approx \frac{k_1}{k_{-1}}[SCI][CH_3CN]$$

$$\frac{d[M]}{dt} = k_2_{[SCI\cdots CH_3CN]} = \frac{k_2 \frac{k_1}{k_{-1}}}{k_2 \frac{k_1}{k_{-1}}}[SCI][CH_3CN] = k_2 K_c [SCI][CH_3CN]$$

finally, the total rate constant is expressed as:

$$k_{1} = \frac{k_{1}k_{2}}{k_{-1} + k_{2}} \approx \frac{k_{1}}{k_{-1}}k_{2} = K_{c}k_{2}$$

Then, we using conventional transition state theory to predict rate constants and equilibrium constants, they can express as:

$$K_{c}(T) = \sigma \frac{Q_{C1}(T)}{Q_{SCI}(T) Q_{NH_{3}}(T)} exp^{[m]}(-\frac{E_{C1}}{k_{B}T})$$
(3)

$$k_{2}(T) = \kappa \frac{k_{B}T Q_{TS}(T)}{h Q_{C1}(T)} exp^{[m]}(-\frac{E_{a}}{k_{B}T})$$
(4)

$$k(T) = \sigma \kappa \frac{k_B T Q_{TS}(T)}{h Q_{SCI}(T) Q_{NH_3}(T)} exp^{[m]}(-\frac{E_a + E_{C1}}{k_B T})$$
(5)

where $k_{\rm B}$ is Boltzmann's constant, *T* is the temperature in K, *h* is Planck's constant, κ is the transmission coefficient, and σ is symmetry factor.

Methods Scale Factor CCSD(T)-F12a/cc-pVTZ-F12 0.984 CCSD(T)-F12a/cc-pVDZ-F12 0.983 DF-CCSD(T)-F12b/jun-cc-pVTZ 0.983 DF-CCSD(T)-F12b/jun-cc-pVDZ 0.981 0.980 M06CR/MG3S 0.977 MN15-L/MG3S M11-L/MG3S 0.985

Table S1. Scale factors applied to vibrational frequencies

Table S2. Mean unsigned deviations of classical barrier heights and classical reaction energies (in kcal/mol)

Mathada	(ΔV)			
Methods	C1	TS1	M1	MOD
W2X//CCSD(T)-F12a/cc-pVTZ-F12	-8.29	-3.29	-56.59	0.00
W2X//CCSD(T)-F12a/cc-pVDZ-F12	-8.29	-3.29	-56.59	0.00
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ	-8.26	-3.28	-56.73	0.06

Mathada	(ΔE_{ZPE})				
Methods	C1	TS1	M1	MUD	
CCSD(T)-F12a/cc-pVTZ-F12	1.24	2.35	5.10	0.00	
DF-CCSD(T)-F12b/jun-cc-pVDZ	1.23	2.36	5.22	0.05	
CCSD(T)-F12a/cc-pVDZ-F12	1.28	2.21	5.14	0.07	

Table S3. Mean unsigned deviations of relative zero-point vibrational energies for R1 (in kcal/mol)

Table S4. The relative enthalpies at 0 K for the $CH_2OO + CH_3CN$ reaction at different methods.

Mathada	ΔH_0			
Methods	C1	TS1	M1	MOD
W2X//CCSD(T)-F12a/cc-pVTZ-F12	-7.05	-0.94	-51.49	0.00
W2X//DF-CCSD(T)-F12b/jun-cc-pVDZ	-7.03	-0.92	-51.51	0.02
W2X//CCSD(T)-F12a/cc-pVDZ-F12	-7.01	-1.08	-51.45	0.07

Table S5. High-pressure-limit rate constant k_1 (cm³ molecule⁻¹ s⁻¹) and transmission coefficients (unitless), and activation energies (in kcal/mol) for the R1 reaction.

<i>T</i> (K)	k_{HLa}^{TST}	$\Gamma_{LL^{b}}$	$k^{SCT}_{LL c}$	$\Gamma_{LL} k^{SCT}_{\ LL}$	k ₁ °	$E_{a1}{}^{d}$
190	1.51×10^{-14}	0.95	1.35	1.29	1.94×10^{-14}	-0.71
200	1.42×10^{-14}	0.95	1.31	1.25	1.77×10^{-14}	-0.67
210	1.35×10^{-14}	0.95	1.28	1.21	1.63×10^{-14}	-0.64
220	1.29×10^{-14}	0.95	1.25	1.18	1.53×10^{-14}	-0.60
230	1.24×10^{-14}	0.95	1.22	1.16	1.44×10^{-14}	-0.56
240	1.21×10^{-14}	0.95	1.20	1.14	1.37×10^{-14}	-0.52
250	1.17×10^{-14}	0.95	1.18	1.12	1.32×10^{-14}	-0.48
260	1.15×10^{-14}	0.95	1.17	1.11	1.27×10^{-14}	-0.44
270	1.13×10^{-14}	0.94	1.16	1.09	1.23×10^{-14}	-0.40
280	1.11×10^{-14}	0.94	1.14	1.08	1.20×10^{-14}	-0.36
290	1.10×10^{-14}	0.94	1.13	1.07	1.18×10^{-14}	-0.31
298	1.10×10^{-14}	0.94	1.13	1.06	1.16×10^{-14}	-0.28
300	1.09×10^{-14}	0.94	1.12	1.06	1.16×10^{-14}	-0.27
310	1.09×10^{-14}	0.94	1.12	1.05	1.14×10^{-14}	-0.24
320	1.09×10^{-14}	0.94	1.11	1.04	1.13×10^{-14}	-0.20
330	1.09×10^{-14}	0.94	1.10	1.03	1.12×10^{-14}	-0.16
340	1.09×10^{-14}	0.94	1.09	1.02	1.11×10^{-14}	-0.12

350 1.09×10^{-14} 0.93 1.09 1.02 1.11×10^{-14} -0.09	
--	--

 $_{a}k_{HL}^{TST}$ is the conventional transition state theory rate constant calculated with the high level.

^b The Γ_{LL} is the LL recrossing transmission coefficient, which equals $k_{LL}^{CVT}/k_{LL}^{TST}$.

^c The high-pressure limit rate constant k is calculated by the dual-level CVT/SCT method and k equals $k_{HL}^{TST} \Gamma_{LL} k_{LL}^{SCT}$.

 ${}^{d}E_{a}$ is Arrhenius activation energies (kcal/mol) for the high-pressure limit , and which is

calculated as $-R\overline{d(1/T)}$ in the high-pressure limit from the dual-level CVT/SCT calculations.

^e Where HL denote higher level with W3X-L//CCSD(T)-F12a/cc-pVTZ-F12 level, and LL denote lower level with M06CR/MG3S level.

Table S6. High-pressure-limit rate constants k_2 (cm³ molecule⁻¹ s⁻¹) and transmission coefficients (unitless), and activation energies (in kcal/mol) for the R2 reaction.

			0	/		
<i>T</i> (K)	k_{HL}^{TST}	Γ_{LL}	k_{LL}^{SCT}	$\Gamma_{LL} k^{SCT}_{LL}$	<i>k</i> ₂	E _{a2}
190	1.54×10^{-13}	0.96	1.64	1.58	2.43 × 10 ⁻¹³	-2.04
200	1.25×10^{-13}	0.96	1.56	1.50	$1.88 - \times 10^{-13}$	-1.95
210	1.04×10^{-13}	0.96	1.49	1.43	1.50×10^{-13}	-1.87
220	8.87 × 10 ⁻¹⁴	0.96	1.44	1.38	1.22×10^{-13}	-1.81
230	7.67×10^{-14}	0.96	1.39	1.33	1.02×10^{-13}	-1.75
240	6.73 × 10 ⁻¹⁴	0.96	1.35	1.30	8.71 × 10 ⁻¹⁴	-1.70
250	5.98 × 10 ⁻¹⁴	0.96	1.32	1.26	7.55×10^{-14}	-1.65
260	5.38 × 10 ⁻¹⁴	0.96	1.29	1.23	6.64×10^{-14}	-1.61
270	4.89×10^{-14}	0.96	1.26	1.21	5.91 × 10 ⁻¹⁴	-1.58
280	4.49×10^{-14}	0.96	1.24	1.19	5.33 × 10 ⁻¹⁴	-1.55
290	4.15×10^{-14}	0.96	1.22	1.17	4.85×10^{-14}	-1.52
298	3.92×10^{-14}	0.95	1.21	1.16	4.53×10^{-14}	-1.50
300	3.87 × 10 ⁻¹⁴	0.95	1.21	1.15	4.45×10^{-14}	-1.50
310	3.63 × 10 ⁻¹⁴	0.95	1.19	1.14	4.12×10^{-14}	-1.48
320	3.42×10^{-14}	0.95	1.18	1.12	3.84×10^{-14}	-1.46
330	3.25×10^{-14}	0.95	1.17	1.11	3.61 × 10 ⁻¹⁴	-1.45
340	3.10 × 10 ⁻¹⁴	0.95	1.16	1.10	3.41 × 10 ⁻¹⁴	-1.44

1	I.	I.	I	I	I.	
350	2.97×10^{-14}	0.95	1.15	1.09	3.23×10^{-14}	-1.43

^a It is worth noting that where HL denote higher level with W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ level, and LL denote lower level with M11-L/MG3S level.

<i>T</i> (K)	k_{HL}^{TST}	Γ_{LL}	k_{LL}^{SCT}	$\Gamma_{LL} k^{SCT}_{\ LL}$	<i>k</i> ₃	E _{a3}
190	5.76 × 10 ⁻²⁰	0.96	1.73	1.67	9.59 × 10 ⁻²⁰	3.60
200	9.87 × 10 ⁻²⁰	0.96	1.63	1.57	1.55×10^{-19}	3.66
210	1.61 × 10 ⁻¹⁹	0.96	1.55	1.49	2.41 × 10 ⁻¹⁹	3.72
220	2.53 × 10 ⁻¹⁹	0.96	1.49	1.43	3.62×10^{-19}	3.77
230	3.83 × 10 ⁻¹⁹	0.96	1.44	1.38	5.28 × 10 ⁻¹⁹	3.83
240	5.62 × 10 ⁻¹⁹	0.96	1.39	1.33	7.51 × 10 ⁻¹⁹	3.88
250	8.03 × 10 ⁻¹⁹	0.96	1.35	1.30	1.04×10^{-18}	3.93
260	1.12 × 10 ⁻¹⁸	0.96	1.32	1.27	1.41×10^{-18}	3.99
270	1.52×10^{-18}	0.96	1.29	1.24	1.89 × 10 ⁻¹⁸	4.04
280	2.04×10^{-18}	0.96	1.27	1.21	2.47×10^{-18}	4.09
290	2.68×10^{-18}	0.96	1.25	1.19	3.19 × 10 ⁻¹⁸	4.14
298	3.29 × 10 ⁻¹⁸	0.95	1.23	1.18	3.87×10^{-18}	4.18
300	3.46 × 10 ⁻¹⁸	0.95	1.23	1.17	4.06×10^{-18}	4.19
310	4.41×10^{-18}	0.95	1.21	1.16	5.10×10^{-18}	4.24
320	5.55 × 10 ⁻¹⁸	0.95	1.20	1.14	6.33 × 10 ⁻¹⁸	4.29
330	6.90 × 10 ⁻¹⁸	0.95	1.19	1.13	7.78×10^{-18}	4.34
340	8.49 × 10 ⁻¹⁸	0.95	1.17	1.11	9.46 × 10 ⁻¹⁸	4.39
350	1.03×10^{-17}	0.95	1.16	1.10	1.14×10^{-17}	4.44

Table S7. High-pressure-limit rate constants k_3 (cm³ molecule⁻¹ s⁻¹) and transmission coefficients (unitless), and activation energies (in kcal/mol) for the R3 reaction.

^a Where HL denote higher level with W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ level, and LL denote lower level with M11-L/MG3S level.

	А	n	Е	T ₀
k_1	2.95×10^{-14}	-0.02	1.45	-152.07
k_2	9.88 × 10 ⁻¹⁴	-1.82	1.69	-107.90
<i>k</i> ₃	5.79 × 10 ⁻¹⁶	2.22	3.04	-8.27

Table S8. Parameters used to fit high-pressure limit rate constants k_1 , k_2 and k_3 (cm³ molecule⁻¹ s⁻¹)

Table S9. Pressure-dependent rate constants $k_1(T, p)$ of the R1 as a function of temperature and pressure by system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK)theory.

<i>p</i> (bar)	T = 350 K	T = 330 K	T = 310 K	<i>T</i> = 298 K
0.0316	1.11×10^{-14}	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
0.1	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
0.178	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
0.316	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
0.562	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
1	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
1.78	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
3.16	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
5.62	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
10	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
31.6	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
100	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
1000	1.11 × 10 ⁻¹⁴	1.12×10^{-14}	1.14×10^{-14}	1.16×10^{-14}
<i>p</i> (bar)	<i>T</i> = 290 K	T = 270 K	T = 250 K	T = 230 K
0.0316	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
0.1	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
0.178	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
0.316	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
0.562	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
1	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
1.78	1.18×10^{-14}	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}

3.16	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
5.62	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
10	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
31.6	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
100	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}
1000	1.18 × 10 ⁻¹⁴	1.23×10^{-14}	1.32×10^{-14}	1.44×10^{-14}

^a For this table, $k_1(T, p)$ is calculated by the SS-QRRK theory method. Here, the SS-QRRK calculations are carried out using the bimolecular association-reaction formula.

Table S10. The rate ratio between $OH + CH_3CN$ and $CH_2OO + CH_3CN$ for various concentrations in molecules/cm³.

			v_1^a		
T/K k _{OH}	k _{ou}	$k_1^{\rm b}$	[CH ₂ OO]=10 ⁵		
		[OH]	[OH]	[OH]	
		$=10^{4}$	$=10^{5}$	$=10^{6}$	
250	1.08×10^{-14}	1.32×10^{-14}	12.22	1.22	0.12
260	1.27×10^{-14}	1.27×10^{-14}	9.98	1.00	0.10
270	1.48×10^{-14}	1.23×10^{-14}	8.31	0.83	0.08
280	1.71×10^{-14}	1.20×10^{-14}	7.02	0.70	0.07
290	1.95×10^{-14}	1.18 × 10 ⁻¹⁴	6.02	0.60	0.06
298	2.16×10^{-14}	1.16×10^{-14}	5.37	0.54	0.05
300	2.21×10^{-14}	1.16 × 10 ⁻¹⁴	5.22	0.52	0.05
310	2.49×10^{-14}	1.14×10^{-14}	4.59	0.46	0.05
320	2.77×10^{-14}	1.13×10^{-14}	4.07	0.41	0.04
330	3.07×10^{-14}	1.12×10^{-14}	3.64	0.36	0.04
340	3.38×10^{-14}	1.11 × 10 ⁻¹⁴	3.29	0.33	0.03
350	3.70×10^{-14}	1.11×10^{-14}	2.99	0.30	0.03
$k_1[CH_2]$	$[OO][CH_2CN]$	$k_1[CH_200]$			

 $v_1 = \frac{k_1 [CH_2 OO] [CH_3 CN]}{k_{OH} [OH] [CH_3 CN]} = \frac{k_1 [CH_2 OO]}{k_{OH} [OH]}, \text{ where } k_{OH} \text{ is the rate constant of OH} + CH_3 CN$

from the preferred values of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. $k_{\text{OH}} = 8.1 \times 10^{-13} \exp(-1080/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.(Journal of Physical and Chemical Reference Data 21, 1125 (1992)).

^b The bimolecular rate constants of CH₂OO + CH₃CN (pressure-independent) are calculated in the present work by using the dual-level strategy.

			v ₂ ^a		
<i>T/</i> K	<i>T</i> /K <i>k</i> _{OH}	kab	[anti-CH ₃ CHOO]=10 ⁵		
1/11			[OH]	[OH]	[OH]
			=104	$=10^{5}$	$=10^{6}$
250	1.08×10^{-14}	7.55×10^{-14}	70.08	7.01	0.70
260	1.27×10^{-14}	6.64×10^{-14}	52.21	5.22	0.52
270	1.48×10^{-14}	5.92×10^{-14}	39.88	3.99	0.40
280	1.71×10^{-14}	5.33×10^{-14}	31.15	3.11	0.31
290	1.95×10^{-14}	4.85×10^{-14}	24.81	2.48	0.25
298	2.16 × 10 ⁻¹⁴	4.53×10^{-14}	20.96	2.10	0.21
300	2.21×10^{-14}	4.45×10^{-14}	20.13	2.01	0.20
310	2.49×10^{-14}	4.12×10^{-14}	16.59	1.66	0.17
320	2.77×10^{-14}	3.84×10^{-14}	13.87	1.39	0.14
330	3.07×10^{-14}	3.61×10^{-14}	11.75	1.18	0.12
340	3.38×10^{-14}	3.41×10^{-14}	10.08	1.01	0.10
350	3.70 × 10 ⁻¹⁴	3.23×10^{-14}	8.73	0.87	0.09
k ₂ [ant	$k_2[anti - CH_3CHOO][CH_3CN] k_2[anti - CH_3CHOO]$				
$v_2 =$	ĸ _{OH} [OH][CH ₃ CN	$\underline{\qquad}$	_{OH} [OH]	where kor	, is the rat

Table S11. The rate ratio between OH + CH₃CN and *anti*-CH₃CHOO + CH₃CN for various concentrations in molecules/cm³.

 $k_{OH}[OH][CH_3CN] = k_{OH}[OH]$, where k_{OH} is the rate constant of OH + CH₃CN from the preferred values of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. $k_{OH} = 8.1 \times 10^{-13}$ exp(-1080/T) cm³ molecule⁻¹ s⁻¹.(Journal of Physical and Chemical Reference Data 21, 1125 (1992)). ^b The bimolecular rate constants of *anti*-CH₃CHOO + CH₃CN are calculated in the present work by using the dual-level strategy.

Table S12. Frequencies and zero-point vibrational energies for R1 path.

Methods	ZPE(kcal/mol)	Frequencies (cm ⁻¹)		
		535.36	637.03	869.95
CCSD(T)-F12a/cc-pVTZ-F12	19.27	951.74	1239.56	1314.85
		1488.18	3139.81	3302.70
		534.12	628.58	860.08
CCSD(T)-F12a/cc-pVDZ-F12	19.23	950.85	1237.42	1307.55
		1486.38	3140.72	3304.76
DF-CCSD(T)-F12b/jun-cc-pVDZ		535.46	632.71	837.62
	19.22	913.08	1224.03	1313.63
		1477.68	3169.35	3340.94
		549.95	705.40	949.47
M06CR/MG3S	19.37	1008.64	1247.02	1401.47
		1562.70	3121.80	3282.74
		538.79	680.05	890.58
M11-L/MG3S	19.00	1005.57	1240.77	1371.45
		1546.21	3020.85	3197.17
		535.78	683.96	936.49
MN15-L/MG3S	19.14	968.15	1251.56	1408.29
		1550.10	3103.81	3265.72

(a) CH₂OO

(b) CH_3CN .

Methods	ZPE(kcal/mol)	Frequencies (cm ⁻¹)

		361.26	361.66	924.09
$CCSD(T) = 12 c/co} = TVT7 = 12$	20.26	1061.99	1062.01	1415.65
CCSD(1)-F12a/cc-pv1Z-F12	28.30	1486.26	1486.50	2306.28
		3066.02	3152.36	3152.36
		361.68	361.94	922.38
CCSD(T)-F12a/cc-pVDZ-F12	28.20	1064.05	1064.32	1418.82
	28.39	1490.44	1490.44	2304.59
		3069.46	3154.68	3154.91
DF-CCSD(T)-F12b/jun-cc-pVDZ		347.61	347.62	935.36
	20.44	1053.46	1053.47	1403.68
	28.44	1474.70	1474.77	2314.75
		3095.27	3195.64	3195.71
		392.78	392.78	954.33
MOCCEMAC2S	27.96	1036.22	1036.22	1382.64
MUOCK/MG3S	27.80	1452.75	1452.75	2400.67
		3072.19	3156.70	3156.70
		393.22	393.22	954.26
M11 L MC2S	27.65	1032.93	1032.93	1373.35
MTT-L/MG3S	27.03	1432.47	1432.47	2382.67
		2992.40	3106.36	3106.36
		391.85	391.85	942.74
		1051.24	1051.24	1401.00
WIN13-L/WIG35	21.12	1472.64	1472.64	2361.84
		3042.77	3132.83	3132.83

(c) TS1.

Methods	ZPE(kcal/mol)	Frequencies (cm ⁻¹)		
		142.08	156.59	214.48
		298.02	423.40	442.04
		474.79	560.18	817.72
		921.24	928.20	1040.18
CCSD(T)-F12a/cc-pVTZ-F12	50.02	50.02 1066.01 1	1076.23	1221.78
		1356.97	1409.09	1475.72
		1482.41	1520.69	2149.92
		3063.16	3150.01	3150.81
		3159.20	3288.04	353.26i
		106.57	141.54	217.82
		293.04	419.01	437.64
		471.44	556.64	807.26
CCSD(T)-F12a/cc-pVDZ-F12	49.87	918.95	925.29	1037.00
		1063.39	1070.13	1218.17
		1352.34	1408.04	1475.00
		1482.55	1517.64	2147.12

		3064.46	3149.96	3151.63
		3161.02	3289.45	353.51i
		141.06	150.37	212.02
		294.31	413.35	440.73
		475.12	561.03	807.59
		899.76	937.09	1027.40
DF-CCSD(T)-F12b/jun-cc-pVDZ	50.07	1056.13	1065.22	1206.62
		1354.66	1396.42	1464.05
		1470.55	1512.24	2157.07
		3090.56	3174.58	3192.29
		3199.90	3321.81	357.96i
		143.25	163.86	203.83
		279.42	442.46	459.66
		483.03	571.23	842.68
		953.00	990.32	1027.13
M06CR/MG3S	49.23	1039.15	1086.29	1223.39
		1376.66	1383.94	1440.48
		1448.41	1540.54	2243.74
		3071.52	3133.64	3159.03
		3167.23	3269.04	328.47i
		142.15	159.87	204.15
		280.16	431.26	451.25
		472.93	562.07	824.07
		945.11	972.05	1010.03
M11-L/MG3S	48.48	1031.96	1044.08	1205.32
		1355.02	1363.45	1414.53
		1425.02	1526.27	2224.38
		2987.55	3012.87	3102.21
		3116.59	3164.82	398.76i
		142.26	178.62	203.91
		281.31	432.45	450.52
		475.20	562.78	835.81
		940.02	955.83	1036.77
MN15-L/MG3S	48.83	1052.52	1084.43	1224.27
		1384.35	1392.24	1457.15
		1466.11	1535.37	2196.44
		3037.46	3113.11	3129.98
		3144.00	3250.32	339.83i

(d) M1.

Methods	ZPE(kcal/mol)	Frequencies (cm ⁻¹)		
CCSD(T)-F12a/cc-pVTZ-F12	52.81	114.21 342.27	152.97 593.81	243.18 653.42

		769.18	853.05	957.98
		959.05	995.45	1066.08
		1100.79	1122.61	1205.50
		1272.33	1371.17	1421.02
		1484.15	1486.68	1529.73
		1744.41	3020.57	3061.56
		3111.37	3135.24	3175.22
		119.70	154.95	243.31
		342.56	593.12	652.36
		767.78	852.66	956.81
		957.96	994.40	1067.42
CCSD(T)-F12a/cc-pVDZ-F12	52.85	1100.35	1122.18	1207.50
		1271.52	1373.78	1422.89
		1487.50	1489.88	1532.22
		1741.54	3021.72	3064.82
		3112.14	3137.04	3177.18
		116.21	184.64	242.19
		340.89	585.47	654.06
		769.60	830.64	952.99
		966.43	1000.35	1055.58
DF-CCSD(T)-F12b/jun-cc-pVDZ	52.98	1094.43	1122.12	1200.14
		1272.39	1362.44	1415.35
		1471.09	1475.91	1514.89
		1760.63	3045.02	3088.76
		3148.60	3175.86	3212.58
		112.57	121.99	250.97
		354.43	615.30	671.66
		789.24	907.89	949.84
		996.10	1008.12	1046.21
M06CR/MG3S	51.79	1095.42	1133.18	1192.97
		1268.67	1353.02	1399.43
		1454.22	1456.97	1509.67
		1786.70	2996.62	3074.59
		3076.82	3146.13	3194.80
		122.67	167.42	252.10
		347.12	610.97	682.16
		810.31	923.46	968.28
		995.06	1025.70	1037.07
M11-L/MG3S	51.61	1098.48	1144.79	1191.34
		1287.33	1351.37	1403.69
		1433.88	1441.44	1490.05
		1780.91	2859.95	2972.46
		3000.54	3099.90	3149.78
MN15-L/MG3S	51.50	123.51	154.65	247.93

	338.72	603.51	667.36
	786.06	904.43	969.83
	982.17	1008.57	1051.15
	1101.95	1129.09	1202.79
	1281.17	1367.62	1409.84
	1472.60	1475.85	1517.39
	1758.37	2936.72	3044.83
	3045.93	3121.21	3172.88

Table S13. Frequencies and zero-point vibrational energies for R2 path. (a) *anti*-CH₃CHOO

Methods	ZPE(kcal/mol)	Frequencie	s (cm ⁻¹)	
		144.09	248.02	321.11
		557.37	829.85	879.37
DE CCSD(T) E12b/jup as rVDZ	27.02	937.06	1040.73	1159.55
DF-CCSD(1)-F120/Jun-cc-pvDZ	57.02	1310.85	1408.94	1456.65
		1463.30	1527.31	3069.25
		3147.61	3192.44	3201.14
		167.52	264.90	326.80
		575.62851.541026.141041.38	851.54	905.05
M11 L/MC2S	26.10		1041.38	1145.35
M11-L/W033	36.10 1315.96 1423.64 3047.28	1315.96	1391.47	1416.83
		1423.64	1599.37	2967.37
		3047.28	3052.40	3121.55
		171.94	264.15	326.19
		565.33	863.02	906.31
MN15 L/MC2S	26.22	1011.661051.821340.051408.64	1051.82	1160.22
WIN13-L/WI033	30.23		1408.64	1456.70
		1458.50	1590.24	3011.83
		3072.60	3126.51	3150.73
		167.52	264.90	326.80
M06CR/MG3S		575.62	851.54	905.05
	36.55	1026.14	1041.38	1145.35
		1315.96	1391.47	1416.83
		1423.64	1599.37	2967.37

S-	1	6

	3047.28	3052.40	3121.55

(b)	TS2	

Methods	ZPE(kcal/mol)	Frequencie	es (cm ⁻¹)	
		109.08	140.52	153.19
		182.66	248.86	314.19
		355.98	430.31	458.84
		479.21	586.85	885.96
		938.41	957.40	983.54
	(7.70)	1040.33	1055.62	1080.64
DF-CCSD(1)-F12b/jun-cc-pVDZ	67.72	1169.70	1315.82	1395.81
		1403.43	1449.21	1464.43
		1470.44	1471.27	1532.34
		2143.96	3077.38	3089.01
		3170.23	3190.40	3196.90
		3202.36	3223.29	
		-430.98	111.65	140.99
		171.04	182.77	254.42
		315.44	335.98	446.63
		468.58	481.91	601.35
		894.75	941.15	954.00
M11 L/MC2S	65 58	1008.33	1032.56	1043.71
M11-L/M033	03.38	1065.66	1150.94	1302.54
		1363.39 1378.	1378.07	1412.57
		1419.75	1428.53	1431.38
		1548.94	2193.35	2987.38
		2988.30	3060.47	3096.03
		3103.67	3114.40	3134.78
		-357.16	111.98	143.34
		175.68	186.73	262.78
		314.29	338.33	449.51
		469.49	484.22	593.93
		896.65	944.56	960.47
MN15-L/MG3S	65.85	1029.80	1041.20	1052.58
	05.85	1087.70	1164.97	1327.63
		1391.70	1397.94	1443.81
		1459.53	1467.99	1471.57
		1540.46	2168.61	3029.38
		3037.08	3117.80	3129.43
		3140.08	3150.23	3164.72
		-336.21	112.06	145.28
M06CR/MG3S	66.38	163.53	183.18	261.38
		325.28	352.27	457.85

	477.59	493.93	603.12
	906.59	951.75	963.23
	1026.98	1039.70	1067.96
	1087.32	1165.67	1323.51
	1376.35	1388.33	1432.54
	1442.81	1450.33	1453.28
	1554.18	2219.09	3059.84
	3071.51	3142.09	3158.97
	3164.82	3172.55	3185.86

(c) M2

Methods	ZPE(kcal/mol)	Frequencie	s (cm ⁻¹)	
		61.96	112.03	202.06
		233.52	319.33	386.93
		456.68	628.74	679.62
		771.59	861.26	909.12
	96	960.49	997.86	1032.42
M11 L/MC2S	69 16	1034.76	1052.53	1120.53
M11-L/MG35	08.40	1168.43	1277.47	1322.57
		1347.12	1378.00	1398.15
		1434.45	1439.90	1445.77
		1449.35	1780.01	2910.65
		2980.16	3001.40	3100.85
		3102.08	3111.12	3150.32
		100.09	127.93	200.16
		244.69	323.89	383.87
		463.11	622.91	665.26
MN15 L/MG2S		766.68	862.38	902.71
		943.61	984.21	1018.93
	(0.40	1045.24	1061.07	1128.47
	00.40	1152.15	1267.78	1321.04
		1360.08	1389.87	1404.79
		1472.63	1475.76	1479.65
		1483.02	1751.56	3020.69
		3022.88	3044.04	3117.69
		3120.22	3129.44	3171.96
		49.78	118.27	201.61
		238.46	323.40	398.27
M06CP/MG3S	68.86	463.75	632.69	671.59
	00.00	764.87	838.62	910.68
		951.16	997.93	1024.79
		1044.45	1054.11	1126.91

1165.48	1266.52	1317.86
1361.34	1383.81	1395.73
1454.57	1457.40	1464.67
1466.81	1784.64	3039.55
3059.97	3074.44	3145.93
3151.10	3154.74	3194.38

Table S14. Frequencies and zero-point vibrational energies for R3 path. (a) *syn*-CH₃CHOO

Methods	ZPE(kcal/mol)	Frequencies	s (cm ⁻¹)	
		208.36	305.54	434.75
		672.61	711.11	883.94
DE(CCSD(T) E12b/ium as mVD7	77 77	980.16	1019.76	1114.55
DF-CCSD(1)-F120/Jun-cc-pvDZ	51.21	1304.51	1385.54	1437.70
		1458.49	1523.40	3059.37
		3128.18	3203.79	3236.14
		227.91	309.26	471.05
		691.95 734.05		979.10
M11 L/MC2S	26.26	992.62 998.59	1098.15	
M11-L/M033	36.36	1310.97	1367.77	1384.06
		1421.21	1591.93	2963.63
		3038.49	3097.86	3139.64
	242.78 677.56	242.78	314.92	463.44
		677.56	744.30	950.85
MN115 L MC2S	26 17	991.20 1025.09		1109.78
MIN13-L/14035	50.47	1337.97 1390.24	1390.24	1429.49
		1457.45	1573.83	3007.19
		3059.58	3158.73	3175.24
		210.92	309.73	482.13
M06CR/MG3S		691.91	762.20	976.69
	36.75	1002.86	1024.73	1106.41
		1336.55	1385.47	1413.36
		1442.45	1591.03	3034.41

S-	1	9

(b)	TS3	

Methods	ZPE(kcal/mol)	Frequencie	es (cm ⁻¹)	
		111.40	143.39	181.17
		216.02	272.13	272.58
		352.43	426.81	489.33
		501.47	658.71	859.37
		913.46	931.26	954.45
	(7.7.4	1039.24	1055.41	1068.47
DF-CCSD(1)-F12b/jun-cc-pVDZ	6/./4	1160.77	1318.94	1384.49
		1396.02	1449.24	1464.70
		1470.62	1476.51	1528.08
		2139.07	3065.57	3088.84
		3169.58	3189.83	3196.53
		3202.17	3233.62	
		-440.84	114.07	162.51
		184.66	207.85	264.24
		281.29	351.12	447.51
		495.99	505.10	659.95
	65.62	869.94	923.16	958.41
M11 L/MC2S		975.62	1018.04	1034.75
MTT-L/MO33		1049.14	1142.03	1316.48
		1350.00	1364.85	1409.16
		1418.88	1427.92	1433.93
		1543.19	2194.84	2980.71
		2987.49	3043.35	3100.77
		3102.53	3114.40	3164.83
		-387.52	112.72	169.08
		196.83	207.20	269.31
		287.00	357.62	448.29
		496.61	503.63	655.97
		873.36	929.24	954.18
MN15-L/MG3S	65.88	965.34	1037.55	1052.80
	05.88	1066.66	1157.50	1333.82
		1379.18	1392.23	1446.56
		1459.55	1467.59	1474.60
		1534.49	2169.49	3015.99
		3036.47	3123.92	3128.45
		3138.00	3140.28	3190.33
		-371.06	114.25	156.08
M06CR/MG3S	66.41	189.68	212.00	268.52
		281.78	352.22	457.75

505.52	521.32	671.35
883.31	938.74	963.50
991.30	1031.23	1039.67
1067.37	1151.93	1344.09
1370.49	1376.81	1431.45
1442.96	1450.11	1458.45
1542.28	2217.33	3048.46
3071.14	3149.28	3158.20
3164.70	3165.12	3212.23

(c) M3

Methods	ZPE(kcal/mol)	Frequencies (cm ⁻¹)		
		102.71	127.43	208.31
		228.70	292.24	389.75
		469.75	622.84	679.67
		756.21	865.33	908.66
		956.92	1005.83	1031.47
M11 L MC28	(0.57	1039.04	1097.23	1121.63
MTT-L/MG3S	68.57	1183.03	1269.70	1330.52
		1355.52	1392.32	1406.91
		1433.80	1440.85	1447.75
		1451.95	1782.30	2828.81
		2989.02	3000.69	3099.86
		3111.00	3117.18	3150.09
		95.50	126.36	206.84
	(8.40	225.81	290.13	380.43
		460.18	613.89	666.20
		740.31	859.40	902.67
		938.66	988.97	1025.04
MN15 L/MC2S		1053.01	1093.20	1127.38
MIN13-L/MO33	08.40	1172.71	1270.34	1338.56
		1374.81	1400.64	1406.54
		1472.79	1475.93	1481.21
		1485.68	1756.80	2914.04
		3031.36	3044.18	3120.41
		3129.62	3134.00	3172.10
		82.97	121.32	208.92
		234.27	300.40	399.51
		469.70	625.27	673.74
M06CR/MG3S	68.89	746.60	846.49	908.75
		943.90	1006.31	1026.70
		1046.83	1075.23	1126.50
		1178.64	1262.59	1324.91

13	368.13	1393.06	1401.90
14	454.46	1456.94	1465.91
14	468.83	1786.21	2977.20
30)64.98	3074.01	3145.38
31	155.59	3159.03	3194.14

Table S15. Cartesian coordinates (Å) and absolute energies (hartrees) of optimized structures for R1 path.

(a)	by	M06CR/MG3S
-----	----	------------

Species	Absolute ener	rgy	Cartesian coordinates			
- process	(hartrees)					
			C	1.06051700	-0.21853800	0.00000000
			0	0.00000000	0.44258900	0.00000000
CH ₂ OO	-189.47		0	-1.16683800	-0.16194300	0.00000000
			Н	1.00256900	-1.30226200	0.00000000
			Н	1.96903400	0.36832400	0.00000000
			С	0.00000000	0.00000000	0.27875800
			N	0.00000000	0.00000000	1.42650700
	122.00		C	0.00000000	0.00000000	-1.17009100
CH ₃ CN	-132.66	Н	0.00000000	1.02150500	-1.54585100	
			Н	0.88464900	-0.51075300	-1.54585100
			Н	-0.88464900	-0.51075300	-1.54585100
			С	-1.63939300	0.52554000	0.21999400
			0	-1.40046300	-0.56492400	-0.37720200
			0	-0.38935300	-1.26604100	0.18609900
			Н	-1.43477600	0.60353000	1.28005500
			Н	-2.35243200	1.17034700	-0.27984600
TS1	-322.13		C	0.97308500	0.51383300	-0.03190500
			N	0.22136600	1.40326800	-0.08846800
			C	2.18406800	-0.28364600	-0.00097100
			Н	2.18975700	-0.89497700	0.89884900
			Н	2.20065900	-0.95298000	-0.85773100
			Н	3.05920400	0.36455700	-0.01594200

		C	1.44664800	0.63619900	0.05541100
		0	1.35379100	-0.79797700	-0.09185300
		0	-0.03210000	-1.08200600	0.06810400
		Н	2.09400700	1.00071700	-0.74528100
		H	1.88262700	0.88776800	1.03076000
M1	-322.22	C	-0.63960400	0.12865000	-0.00442600
		N	0.11023500	1.14143400	-0.04629500
		C	-2.11734600	0.07065500	-0.00864700
		H	-2.46991800	-0.48263200	-0.87801500
		H	-2.47423100	-0.44812300	0.88031100
		H	-2.51584500	1.07907100	-0.02773300

(b) by CCSD(T)-F12a/cc-pVTZ-F12

Species	Absolute energy (hartrees)	Ca	rtesian coordinates		
		C	-1.0649415951	0.1992476468	0.0000000000
		0	0.0146891002	-0.4698160766	0.0000000000
CH ₂ OO	-189.41	0	1.1726406690	0.2082457675	0.0000000000
		H	-1.0049041189	1.2797686039	0.0000000000
		H	-1.9662640554	-0.3944549416	0.0000000000
		C	0.0000000000	-0.0000035710	0.2849766443
		N	0.0000000000	-0.0000027010	1.4428019700
CUCN	122.50	C	0.0000000000	-0.0000084755	1.1777587326
CH ₃ CN	-152.39	H	0.0000000000	1.0238364403	-1.5464111275
		H	0.8866476636	-0.5119113464	-1.5463938771
		Η	-0.8866476636	-0.5119113464	-1.5463938771
		C	-1.6519584877	0.5147929532	0.2340577647
		0	-1.4037705250	-0.5726791139	-0.3852341859
		0	-0.3457058464	-1.2456238653	0.1979338565
		Η	-1.4255955131	0.5828673451	1.2877543704
		Η	-2.3759662780	1.1543923373	-0.2529756149
TS1	-322.00	C	0.9419608128	0.4954380716	-0.0260415001
		N	0.2077883989	1.4135554912	-0.0817420642
		C	2.1772578492	-0.2927310651	-0.0057011603
		H	2.1935957037	-0.9046462957	0.8938607964
		H	2.1956000642	-0.9527924794	-0.8696604150
		H	3.0383648214	0.3741066212	-0.0216168476
		C	-1.4599072789	-0.6257522563	0.0771521984
M1	-322.08	0	-1.3754767824	0.8019885219	-0.1194243465
1411	-522.00	0	0.0373899037	1.0954460672	0.1116280936
		H	-2.1343764429	-1.0044217266	-0.6899019095

	Н	-1.8422980717	-0.8517224915	1.0781566591
	С	0.6352261634	-0.1244862598	-0.0017451588
	Ν	-0.1169552163	-1.1438962142	-0.0665963409
	С	2.1213421397	-0.0735754792	-0.0117432328
	Η	2.4694351431	0.4770907271	-0.8849893946
	Η	2.4806472206	0.4398402098	0.8798731685
	Η	2.5074522217	-1.0882290985	-0.0338297368

(c) by CCSD(T)-F12a/cc-pVDZ-F12

Species	Absolute energy (hartrees)	Car	tesian coordinates		
		С	-1.0653788937	0.1993413752	0.0000000000
		0	0.0157326658	-0.4711795226	0.0000000000
CH ₂ OO	-189.38	0	1.1734170344	0.2088162868	0.0000000000
		Н	-1.0054411078	1.2798271995	0.0000000000
		Н	-1.9671096988	-0.3938143388	0.0000000000
		С	0.0000000000	-0.0000035596	0.2854845029
		N	0.0000000000	-0.0000027441	1.4438564815
	122.57	C	0.0000000000	-0.0000085799	-1.1782580792
CH ₃ CN	-132.57	Н	0.0000000000	1.0238226777	-1.5467655604
		Н	0.8866355509	-0.5119043971	-1.5467481724
		Н	-0.8866355509	-0.5119043971	-1.5467481724
		С	-1.6542534416	0.5154804872	0.2343623134
		0	-1.4052915276	-0.5727575035	-0.3864893396
		0	-0.3470091992	-1.2460229808	0.1968330691
		Н	-1.4277271256	0.5832284950	1.2879983539
		Н	-2.3783251212	1.1550661108	-0.2524457329
TS1	-321.96	C	0.9420353003	0.4942689322	-0.0253758759
		N	0.2098211338	1.4146535311	-0.0811120120
		C	2.1786933372	-0.2936259346	-0.0055901580
		Н	2.1976308504	-0.9041936942	0.8947248329
		Н	2.1976393358	-0.9543286762	-0.8689386793
		Η	3.0383574578	0.3749112331	-0.0233317717
		C	-1.4607449949	-0.6257655648	0.0768587660
MI		0	-1.3768538458	0.8026566875	-0.1200343841
	222.04	0	0.0373679980	1.0963847653	0.1139073555
11/1 1	-322.04	Η	-2.1359175599	-1.0045006455	-0.6896375751
		Н	-1.8424374766	-0.8523524359	1.0780573678
		C	0.6352009130	-0.1244647956	-0.0016193969

1	N	-0.1168537034	-1.1448191459	-0.0681444176
	С	2.1223420082	-0.0735494195	-0.0117322512
]	Η	2.4703416667	0.4758553694	-0.8857763657
]	Η	2.4815823485	0.4410527896	0.8791854073
]]	Η	2.5084516463	-1.0882156046	-0.0324845063

(d) by DF-CCSD(T)-F12b/jun-cc-pVDZ

Species	Absolute energy (hartrees)	Cartesian coordinates				
		С	-1.0660225872	0.1999444614	0.0000000000	
		0	0.0192321342	-0.4711285542	0.0000000000	
CH ₂ OO	-189.28	0	1.1781680485	0.2053782480	0.0000000000	
		Н	-1.0066205545	1.2906313984	0.0000000000	
		Н	-1.9735370410	-0.4018345535	0.0000000000	
		C	-0.000000054	-0.000000934	0.2881692508	
		N	0.0000000060	0.0000000470	1.4574605957	
CHCN	122.50	C	-0.0000000015	-0.0000002169	-1.1808352630	
CH ₃ CN	-132.30	Н	0.0000000004	1.0328441612	-1.5513246088	
		Н	0.8944694949	-0.5164224490	-1.5513244834	
		Н	-0.8944694943	-0.5164224490	-1.5513244913	
		C	-1.6624770330	0.5181043251	0.2349678509	
		0	-1.4116763635	-0.5730237547	-0.3879359460	
		0	-0.3547733605	-1.2477677204	0.1953193050	
		Н	-1.4368176463	0.5830643958	1.2993100953	
		Н	-2.3966104810	1.1595060081	-0.2567998020	
TS1	-321.79	C	0.9463864911	0.4924314699	-0.0276182717	
		Ν	0.2086854567	1.4226131938	-0.0823016521	
		C	2.1894199938	-0.2960880788	-0.0064612805	
		Н	2.2066487789	-0.9096761624	0.9030593478	
		Н	2.2087143557	-0.9634651718	-0.8764844379	
		Η	3.0540708082	0.3809814955	-0.0244202088	
		C	-1.4633752820	-0.6243637353	0.0732302080	
		0	-1.3773292419	0.7984995342	-0.1461206027	
		0	0.0320294506	1.0941233591	0.1375290970	
	221.97	Н	-2.1614077995	-1.0088016430	-0.6827998623	
11/1 1	-521.67	Η	-1.8296307946	-0.8413647688	1.0930965943	
		C	0.6366054184	-0.1265182126	-0.0047908451	
		N	-0.1205190258	-1.1510163366	-0.0908567843	
		C	2.1267797089	-0.0725280863	-0.0101319638	

	Н	2.4780338947	0.4830418126	-0.8905761296
	Н	2.4832258357	0.4466718123	0.8904942384
	Н	2.5180668357	-1.0954617355	-0.0304939501

Table S16. Cartesian coordinates (Å) and absolute energies (hartrees) of optimized structures for R2 path(*anti*-CH₃CHOO + CH₃CN).

Species	Absolute energy (hartrees)	Cartesian coordinates			
		C	0.0029814656	0.5642599882	0.000000193
		0	0.1462898413	-0.6984780840	-0.0000000701
		0	1.4178602368	-1.1916911975	-0.000000331
	220 52	Н	0.9253204744	1.1566353372	0.0000001053
anti-CH ₃ CHOO	-228.52	C	-1.3751037059	1.1192691991	-0.000000030
		Н	-1.5232386555	1.7522052448	0.8885323728
		Н	-1.5232386956	1.7522051348	-0.8885324524
		Н	-2.1121809611	0.3069343774	0.0000000612
		C	-0.000000061	-0.0000000918	0.2859697628
	-132.50	N	0.000000064	0.0000000440	1.4552599343
CHCN		C	-0.000000014	-0.0000002160	-1.1830361690
CH ₃ CN		Н	0.0000000004	1.0328442880	-1.5535242582
		Н	0.8944696043	-0.5164225121	-1.5535241308
		Н	-0.8944696036	-0.5164225121	-1.5535241391
		C	1.2711180094	0.0644704854	0.3654569313
		0	0.7527261874	1.0148419534	-0.3284676816
		0	-0.4917893916	1.3814588989	0.1687145950
		Η	0.9723566752	0.0019609944	1.4144430374
		C	-1.2421188912	-0.6045751702	-0.0070109955
		N	-0.2899859718	-1.3184888371	0.0147261085
TS2	361.03	C	-2.6574437276	-0.2020664097	-0.0789246877
152	301.03	Н	-2.8912402661	0.4377627936	0.7814874045
		Η	-2.8217614332	0.3769506169	-0.9959289165
		Η	-3.2961093614	-1.0956722908	-0.0722424878
		C	2.5399373106	-0.5300793345	-0.1370002466
		H	3.3950774123	-0.0494744511	0.3633811931
		H	2.5458785650	-1.6005904990	0.1061297094
		H	2.6219498831	-0.3953647502	-1.2224109637

(a) by DF-CCSD(T)-F12b/jun-cc-pVDZ

(b) by M11-L/MG3S

G .	Absolute energy	Cartesian coordinates				
Species	(hartrees)					
		С	0.00000000	0.55187700	0.00000000	
		0	0.15958700	-0.67614500	0.00000000	
		0	1.38905800	-1.15242700	0.00000000	
	228.02	Η	0.90857200	1.16903200	0.00000000	
	-228.92	C	-1.35782000	1.07589000	0.00000000	
		Η	-1.53042800	1.71430100	0.87710400	
		Η	-1.53042800	1.71430100	-0.87710400	
		Η	-2.08995300	0.26434100	0.00000000	
		C	0.00000000	0.00000000	0.27418500	
		Ν	0.00000000	0.00000000	1.41703300	
CHCN	122 77	C	0.00000000	0.00000000	-1.15680700	
	-132.77	Η	0.00000000	-1.02495100	-1.54116600	
		Η	-0.88763300	0.51247500	-1.54116600	
		Η	0.88763300	0.51247500	-1.54116600	
		C	1.22806500	0.07581900	0.35718200	
		0	0.72329100	1.00118400	-0.32873500	
		0	-0.48834800	1.35444100	0.15462900	
		Η	0.92908800	0.01878400	1.40975300	
		C	-1.21289000	-0.61501500	-0.01120000	
		Ν	-0.26269600	-1.28735500	0.00280800	
TS2	-361.67	C	-2.58962000	-0.21546200	-0.07191500	
152		Η	-2.82671000	0.41865200	0.78794200	
		Η	-2.76487100	0.37875600	-0.97316800	
		Η	-3.24760300	-1.09205500	-0.07298100	
		C	2.48166700	-0.50678300	-0.12061300	
		Η	3.33701500	-0.04084400	0.38552300	
		Η	2.49868500	-1.57388800	0.11533900	
		Н	2.59038300	-0.37427400	-1.19993200	
		C	-1.12202900	-0.11399500	-0.47856400	
		0	-0.71277100	1.21571300	-0.17903300	
		0	0.61573900	1.08734400	0.27936100	
		Η	-1.61373500	-0.05915300	-1.47013900	
		C	0.95685300	-0.14600500	-0.06308800	
M2	-361.77	N	0.06512100	-0.88456800	-0.54068100	
		C	2.36234300	-0.47538100	0.18966500	
		Η	3.02362900	0.17776400	-0.38921300	
		Η	2.60822300	-0.32858100	1.24662600	
		Η	2.54600000	-1.51470300	-0.08287600	
		C	-2.07808500	-0.63198400	0.55521000	

Η	-2.96765100	0.00307800	0.61786400
Η	-2.39411000	-1.64901000	0.30074700
Н	-1.59644900	-0.65769200	1.53980400

Table S17. Cartesian coordinates (Å) and absolute energies (hartrees) of optimized structures for R3 path(syn-CH₃CHOO + CH₃CN).

	/ 5 1				
Species	Absolute energy (hartrees)	Cartesian coordinates			
		C	0.4813796268	0.7090224817	-0.0000058374
		0	-0.7900931981	0.5834770668	0.0000008922
		0	-1.2750723867	-0.6867758358	0.0000092784
	229.52	C	1.3594699134	-0.4759395463	-0.0000042608
syn-CH ₃ CHOO	-228.33	H	1.1159534447	-1.0973786637	0.8776557326
		H	1.1159452788	-1.0973871276	-0.8776559913
		H	2.4149410153	-0.1815141263	-0.0000106037
		Н	0.8002293057	1.7539867513	-0.0000122101
		C	-0.000000061	-0.0000000918	0.2859697628
	-132.50	N	0.000000064	0.0000000440	1.4552599343
CUCN		C	-0.000000014	-0.0000002160	-1.1830361690
CH ₃ CN		Η	0.0000000004	1.0328442880	-1.5535242582
		Η	0.8944696043	-0.5164225121	-1.5535241308
		Н	-0.8944696036	-0.5164225121	-1.5535241391
		C	1.4251925616	-0.0809268408	-0.4590154327
		0	0.8463913880	1.0675585657	-0.5873680967
		0	-0.1187803858	1.2872148058	0.3811840881
		Н	2.0267636942	-0.3109319716	-1.3453204890
		C	-1.1597313850	-0.4882814521	-0.1972875666
		N	-0.3502970023	-1.1843090571	-0.7246905498
TS2	261.02	C	-2.4688602533	-0.0590746327	0.3259863863
155	-361.03	Н	-2.3617770713	0.2148750418	1.3833234155
		H	-2.8060302911	0.8256415975	-0.2279022601
		Н	-3.1948318425	-0.8762476685	0.2179646416
		C	1.7741730954	-0.6991037738	0.8531939090
		Η	1.0225997268	-0.4628501435	1.6117605342
		H	1.8748754151	-1.7845072607	0.7296173766
		H	2.7496843502	-0.2830022100	1.1596040438

(a) by DF-CCSD(T)-F12b/jun-cc-pVDZ

(b) M11-L/MG3S

Species	Absolute energy	energy Cartesian coordinates			
_	(hartrees)	9	0.4570.4000	0.00041000	0.00000000
		C	0.45/94900	0.69941000	-0.00000600
		0	-0.77869300	0.56788800	0.00000100
		0	-1.22442600	-0.67690400	0.00000900
syn-	-228.92	C	1.32708500	-0.45293000	-0.00000400
CH ₃ CHOO		Н	1.07743400	-1.08729500	0.86396800
		Н	1.07742600	-1.08730300	-0.86396800
		Η	2.38225700	-0.17723700	-0.00001000
		Н	0.77762900	1.74508400	-0.00001200
		C	0.00000000	0.00000000	0.27418500
		N	0.00000000	0.00000000	1.41703300
CILCN	122.77	C	0.00000000	0.00000000	-1.15680700
CH ₃ CN	-132.//	Н	0.00000000	-1.02495100	-1.54116600
		Н	-0.88763300	0.51247500	-1.54116600
		Н	0.88763300	0.51247500	-1.54116600
		С	1.37907100	-0.07943500	-0.43565600
		0	0.83174000	1.05078900	-0.57197100
		0	-0.10543600	1.27086400	0.37483900
		Н	2.00087200	-0.32207800	-1.30825000
		C	-1.13836900	-0.49324900	-0.21259100
		N	-0.32564200	-1.14565800	-0.73074800
		C	-2.40341400	-0.06041100	0.30737100
TS3	-361.69	Н	-2.29694900	0.20935700	1.36258900
		Н	-2.73782100	0.83446900	-0.22503300
		Н	-3.15433300	-0.85275100	0.20693500
		C	1.70196000	-0.68739700	0.85871300
		Н	0.94306500	-0.45112200	1.60389100
		Н	1.81068100	-1.76864300	0.75312700
		H	2 66805200	-0 27989900	1 19201400
		C	1 08007600	-0 11834500	-0.42089300
		0	0.69102200	1 15864900	0.04889200
		0	-0 71840200	1 12565100	0.07432900
		н	1 31009700	-0.06225900	-1 51225300
			-0.00821300	-0.17224200	-0.02226100
			-0.77621500	-0.17224200	0.22067300
M3	-361.77		-0.04000000	-0.23007200	0.23007300
			-2.7101/000	-0.79170300	1 1/581200
			-2.70347300	-0.1/030300	0.58420400
		п п	-3.02304400	1 56622600	-0.30429400
			-2.30393900	-1.30033000	0.03011100
			2.29014900	-0.33049000	0.34008000

	Н	2.65425000	-1.49507800	-0.03106100
	Н	3.10057500	0.20192000	0.21927100

Table S18. The reaction classic energy barrier for R1, R2 and R3 reactions.

Method	anti-CH ₃ CHOO	syn-CH ₃ CHOO	CH ₃ CN	TS2	TS3
W2X ^a	-229.0629212	-229.0688175	-132.8277606	-361.8976062	-361.8941424
W3X-L	-229.0662375	-229.0719358	-132.8290367	-361.9011746	-361.897677

Both W2X and W3X-L are based on DF-CCSD(T)-F12b/jun-cc-pVDZ geometric optimizations.

Figure S1. The enthalpies profile of the M2 isomerization channels for the *anti*-CH₃CHOO + CH₃CN reactions. Values are given for all species as calculated by M11-L/MG3S.

Figure S2. Optimized M11-L/MG3S geometries for the pre-reactive complex, transition

(b) anti-CH₃CHOO + CH₃CN

(a) CH₂OO + CH₃CN

state, and product of the acetonitrile addition to the Criegee intermediates. Distances are given in angstroms (Å).

References

- 1 J. L. Bao, J. Zheng, D. G. Truhlar, J. Am. Chem. Soc., 2016, 138, 2690-2704.
- 2 J. L. Bao, D. G. Truhlar, Phys. Chem. Chem. Phys., 2016, 18, 10097-10108.
- 3 J. L. Bao, X. Zhang, D. G. Truhlar, Phys. Chem. Chem. Phys., 2016, 18, 16659-16670.
- 4 J. L. Bao, D. G. Truhlar, Phys. Chem. Chem. Phys., 2018, 20, 30475-30479.
- 5 K. T. Kuwata, M. R. Hermes, M. J. Carlson, C. K. Zogg, J. Phys. Chem. A, 2010, 114, 9192-9204.
- 6 T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M. Kulmala, M. Olzmann, *Phys. Chem. Chem. Phys.*, 2015, **17**, 19862-19873.
- 7 F. M. Mourits, F. H. A. Rummens, Can. J. Chem., 1977, 55, 3007-3020.