Supporting information for manuscript Molecular dynamics simulations and solid-state nuclear magnetic resonance spectroscopy measurements of C-H bond order parameters and effective correlation times in a POPC-GM3 bilayer

Simon Fridolf¹, Mona Koder Hamid², Leo Svenningsson¹, Marie Skepö², Emma Sparr¹, Daniel Topgaard¹

¹Division of Physical Chemistry, Lund University, Lund, Sweden; ²Division of Theoretical Chemistry, Lund University, Lund, Sweden.

October 2022

Molecular dynamics simulations

All-atom molecular dynamics (MD) simulations were done for POPC bilayers with and without 30 mol% GM3 using the GROMACS package (version 2021)¹ and modelled with the CHARMM36 force field² and CHARMM modified TIP3P water model.^{3,4} The initial bilayers were constructed with the CHARMM-GUI Membrane Builder.⁵ The POPC bilayer had 80 lipids in each leaflet and was hydrated with 13125 water molecules. The second bilayer had 56 POPC and 24 GM3 lipids in each leaflet and was hydrated with 10940 water molecules and neutralized with 48 potassium ions. A rectangular box was used with the initial dimensions 7.4 x 7.4 x 11.9 nm and 7.3 x 7.3 x 11.9 nm for the POPC and POPC-GM3 bilayers, respectively. Periodic boundary conditions were applied in all directions. Initial structures were minimized with the steepest descent algorithm. Equilibration with position restraints on the lipids was done in six steps following the standard CHARMM-GUI protocol for a total of 2250 ps. Further equilibration was done with position restraints lifted and used the Verlet leap-frog integrator with a 2 fs time step and frames saved every 100 ps, for 64 ns and 100 ns, for POPC and POPC with 30 mol% GM3 respectively. Production runs were then done, also with the Verlet leapfrog integrator using a 2 fs time step and frames saved every 100ps for a total of 1 µs, with separate groups for the lower and upper leaflet for center of mass motion removal to ensure no drifting of the leaflets. Pair lists were generated with a Verlet cutoff-scheme for the nonbonded interactions. Van der Waals interactions were calculated with a force-switch and cut off radius of 1.2 nm. Long-ranged electrostatics were managed with Particle-Mesh Ewald⁶ using a grid spacing of 0.12 nm and cut-off radius of 1.2 nm. Bonds with hydrogen were constrained with the LINCS algorithm.⁷ Rigid water was used together with the SETTLE algorithm.⁸ Temperature was set at 303.15 K using the Nose-Hoover thermostat^{9,10} with a coupling constant of 1.0 ps. Pressure was maintained at 1.0 bar with a Parrinello-Rahman barostat¹¹ using semi-isotropic pressure coupling, separating the lateral and normal dimensions relative to the bilayer, with a coupling constant of 5.0 ps and a compressibility of 4.5 x 10⁻⁵ bar⁻¹.

All analysis were done on the complete production runs of 1 μ s. Order parameters S_{CH} were calculated with code from the NMRlipids project.¹² S_{CH} is defined according to Eq. 2 in the main text and can be calculated from the trajectories as follows:

$$S_{\rm CH} = \frac{1}{2NM} \sum_{m=1}^{M} \sum_{n=1}^{N} \left(\frac{3r_{nm,z}^2}{|\vec{r}_{nm}|^2} - 1 \right), \tag{S1}$$

where \vec{r}_{nm} is the vector for the C-H bond of molecule m at time frame n, relative to a coordinate axis placing the z-axis parallel to the bilayer normal. The sum goes through all Mlipids, and all N frames of the analyzed trajectory.

The simulations were extended further for a minimum of 1 ns, in steps where frames for the trajectory were saved more frequently, down to the limit of 2 fs. The reorientational autocorrelation for the fast regime, $g_{\rm f}(\tau)$, was calculated using the "rotacf" function in Gromacs. The length of simulations determines the maximum time τ , and the shortest time between frames, 2 fs, the minimum τ probed. At the ms range $g_{\rm f}(\tau)$ is approximated as $S_{\rm CH}^2$.

Electron densities were calculated using the gromacs command "gmx density" and assigning atoms the number of electrons according to their atomic number. From the electron density of the lipid bilayer, the head-to-head distance D_{HH} is obtained from the distance between the maximum peaks,^{13,14} see figures S1 and S2. Number densities were calculated with "gmx density" and converted to volume probabilities following the method by Petrache et al.¹⁵ with the number density for each lipid element multiplied by a correction factor, see table S1. The bilayer thickness, $D_{\rm B}$ and hydrophobic thickness, $D_{\rm C}$ are found from Gibbs dividing surface of the volume probability of water and the hydrocarbon chains respectively¹⁶, see figures S3 and S4.

Group	Volumetric correction factor					
	POPC (ų)	POPC:GM3 7:3 (ų)				
POPC – PCN	6.00	6.00				
POPC – Choline CH ₃	8.00	7.40				
ΡΟΡΟ – γ	9.70	9.10				
POPC – CH	3.50	8.75				
POPC – CH ₂	9.80	8.75				
POPC – CH ₃	11.80	11.10				
GM3 – NeuAc		6.80				
GM3 – Glucose		9.20				
GM3 – Galactose		7.50				
GM3 – CH₂, CHNH, CHOH, CO		8.75				
GM3 – CH₃		11.10				
Water	9.94	9.945				

Table S1: The volumetric correction parameters used to convert the number densities to volume probabilities.

Г

Figure S1: Electron density across the POPC bilayer (grey) and its headgroup (red) and hydrocarbon tails (green), as well as that of water (blue) and the total density (water+lipids). The head-to-head distance D_{HH} is illustrated with the double arrow in the figure.

Figure S2. Electron density across the GM3:POPC 3:7 bilayer (gray) and its head group (red) and hydrocarbon tails (green), where that of GM3 and POPC have been grouped together, as well as that of water (blue) and the total density (water+lipids). The head-to-head distances D_{HH} corresponding to the two maxima in the total density are illustrated with the double arrows in the figure.

Figure S3. The volume probability across the z-axis for the POPC lipid tails including CH and CH₂, (green), methyl groups (orange) and its head group (red), as well as water (blue). Vertical lines showing Gibbs dividing surface for water (dashed dotted) and hydrocarbons (dotted) from which the bilayer thickness D_B, and hydrophobic

thickness, D_c (illustrated with double arrows) are determined. Top graph shows the sum of all components, ideally equal to one.

Figure S4. The volume probability across the z-axis for the GM3 and POPC lipid tails, including CH, CH_2 , CHNH, CHOH, CO groups (green), methyl groups (orange), the head groups of POPC (red) and GM3 (cyan), as well as water (blue). Vertical lines showing Gibbs dividing surface for water (dashed dotted) and hydrocarbons (dotted) from which the bilayer thickness D_B , and hydrophobic thickness, D_C (illustrated with double arrows) are determined. Top graph shows the sum of all components, ideally equal to one.

Figure S5 MD simulation snapshots of POPC and POPC with 30 mol% GM3 at varying expoure times (motion blur), illustrating the timescale of segmental motions. The colors identify different molecular segments: blue (water), red (headgroups) and yellow (hydrophobic tails). White labels and arrows annotate the sharp-to-blur transition for water, the POPC headgroup, the central acyl chain carbons, the terminal methyl groups on the acyl chains and the GM3 headgroup, which roughly corresponds to the effective correlation time τ_e for rotational diiffusion of molecular segments. The view scale for all snapshots is the same and the length of the white scale

bar represents 1 nm. The field of view is 1.1 times the box sizes in the x and y directions and 0.7 in the z-direction. Periodic boundry conditions were applied in all directions.

NMR spectroscopy

Figure S6: 1D, HETCOR¹⁷ and R-PDLF¹⁸ MAS NMR spectra of an equilibrium phase of POPC in the absence (A) and presence (B) of 30 mol% GM3, recorded at 303 K with 5 kHz MAS and 68 kHz SPINAL64 ¹H-decoupling during ¹³C acquisition. All experiments were done using both INEPT (red) and CP (blue) for ¹H-¹³C polarisation transfer. The bottom panels are zoom-ins of the hydrophobic tails CH₂ signal from the R-PDLF spectra with POPC peak assignments from Ferreira et al.¹⁹.

Figure S7: ¹H-¹³C Dipolar modulation of the normalised intensity with time in the indirect dimension t_1 for the ¹³C tail terminal methyl signals R18, R16', 18 and 16' (A) and choline γ -methyls (B) during the R-PDLF experiment for samples of POPC in the absence (black) and presence (blue) of 30 mol% GM3, recorded at 303 K with INEPT for polarization transfer, 5 kHz MAS and 68 kHz SPINAL64 ¹H-decoupling during ¹³C acquisition. Small values of the order parameter $|S_{CH}|$ can be estimated from the minimum in the time-domain signal, where $\Delta v^{R-PDLF} = 2/t_{min}$, ²⁰ from which both values of $|S_{CH}|$ was estimated to approximately 0.004 for the tail terminal methyls. Note that $|S_{CH}|$ values in the main text were obtained from time-domain fits to Eq. 9 rather than simple inspection of the minimum. The indirect dimension was sampled in 32 steps with 400 µs linear increments.

Figure S8: R-PDLF¹⁸ MAS NMR spectra of an equilibrium phase of POPC in the absence (left column) and presence (right column) of 30 mol% GM3, recorded at 303 K with 5 kHz MAS and 68 kHz SPINAL64 ¹H-decoupling during ¹³C acquisition. Peak labels are from Fig. 1 in the main text, where g3 and g2 refers to glycerol carbons in POPC. Experiments were done using INEPT (red) and CP (blue) for ¹H-¹³C polarisation transfer. The horizontal black lines are guides for the eye used to illustrating splittings that are affected by the presence of GM3.

Carbon label	$\delta^{ m 13}$ C (ppm)	$\delta^{ ext{1}}$ H (ppm)	$ S_{\rm CH} $ (manual)	$ S_{\rm CH} $ (fit)	$R_{1\rho}$ (s ⁻¹)	R_1 (s ⁻¹)	$ au_{ m e}$ (s)
R18,R16',18,16'	14.00	0.89	0.00	0.02	2.06	0.34	1.65·10 ⁻¹⁰
11	22.46	2.01	0.07	-	-	-	-
R17,R15',17,15'	22.84	1.30	0.06	0.07	3.65	0.57	4.43·10 ⁻¹⁰
3,3'	25.17	1.60	0.19	0.19	12.60	2.20	1.55·10 ⁻⁹
R3,R6	26.48	1.58	0.26	0.27	11.51	3.45	1.57·10 ⁻⁹
R3'	27.40	1.56	0.12	-	-	-	-
8	27.40	2.03	0.13	-	-	-	-
11	27.55	2.03	0.06	-	-	-	-
R4'	29.12	1.32	0.21	-	-	-	-
4	29.47	1.32	0.19	-	-	-	-
R5'	29.49	1.32	0.21	-	-	-	-
14,15	29.65	1.32	0.11	-	-	-	-
12,12'	29.84	1.32	0.12	-	-	-	-
4'	29.84	1.32	0.19	-	-	-	-
6	29.84	1.32	0.18	-	-	-	-
R13	29.85	1.32	0.11	-	-	-	-
R12'	29.86	1.32	0.12	-	-	-	-
13,13'	29.96	1.32	0.11	-	-	-	-

Table S2: NMR-derived order parameters $|S_{CH}|$, effective correlation times τ_e and $R_{1\rho}$ and R_1 relaxation rate constants for POPC with 30 mol% GM3 at 303 K.

5	29.96	1.32	0.19	-	-	-	-
R13'	30.00	1.32	0.09	-	-	-	-
R1 4	30.02	1.32	0.11	-	-	-	-
R15	30.02	1.32	0.10	-	-	-	-
5'	30.09	1.32	0.19	-	-	-	-
12	30.09	1.32	0.11	-	-	-	-
10'	30.19	1.32	0.16	-	-	-	-
11'	30.19	1.32	0.15	-	-	-	-
R10',R11,R12	30.20	1.32	0.16	-	-	-	-
R11'	30.20	1.32	0.15	-	-	-	-
7	30.35	1.32	0.16	-	-	-	-
6'	30.50	1.32	0.20	0.22	14.38	1.42	1.92·10 ⁻⁹
7'	30.58	1.32	0.20	0.22	14.38	1.42	1.92·10 ⁻⁹
8'	30.67	1.32	0.19	0.22	14.38	1.42	1.92·10 ⁻⁹
9'	30.76	1.32	0.19	0.22	14.38	1.42	1.92·10 ⁻⁹
R9,R10	30.78	1.32	0.22	0.22	14.38	1.42	1.92·10 ⁻⁹
R8',R9'	30.78	1.32	0.20	0.22	14.38	1.42	1.92·10 ⁻⁹
R7,R8	30.98	1.32	0.24	0.22	14.38	1.42	1.92·10 ⁻⁹
R6',R7'	30.98	1.32	0.20	0.22	14.38	1.42	1.92·10 ⁻⁹
R14',R16	32.22	1.28	0.08	0.10	4.98	0.79	6.06·10 ⁻¹⁰
16,14'	32.23	1.26	0.09	0.10	4.98	0.79	6.06·10 ⁻¹⁰
2'	34.24	2.33	0.20	0.14	21.52	2.46	2.72·10 ⁻⁹
2	34.24	2.33	0.08	0.14	21.52	2.46	2.72·10 ⁻⁹
R2'	36.50	2.24	0.05	0.19	52.36	2.13	7.21·10 ⁻⁹
1113	39.73	2.94	0.01	0.19	29.02	2.41	3.83·10 ⁻⁹
1113	39.73	2.67	0.01	0.01	29.02	2.41	3.83·10 ⁻⁹
1115	52.09	3.58	0.04	0.04	13.45	2.52	3.16·10 ⁻⁹
R2	53.57	3.94	0.25	0.29	28.28	1.29	8.18·10 ⁻⁹
γ	54.31	3.23	0.00	0.01	3.00	2.41	1.06·10 ⁻¹⁰
α	59.67	4.29	0.04	0.04	7.69	2.82	7.59·10 ⁻¹⁰
16	61.39	3.77	0.14	0.17	28.9	4.34	3.53·10 ⁻⁹
16	61.39	3.77	0.01	0.04	28.9	4.34	3.54·10 ⁻⁹
116	63.09	3.63	0.16	0.17	19.3	5.00	2.17·10 ⁻⁹
116	63.09	3.85	0.06	0.07	19.3	5.00	2.17·10 ⁻⁹
g1	63.21	4.23	0.14	0.14	25.30	4.32	3.06·10 ⁻⁹
g1	63.21	4.43	0.08	0.01	22.30	4.32	3.06·10 ⁻⁹
1119	63.51	3.80	0.06	-	-	-	-
1119	63.51	4.38	0.06	-	-	-	-
g3	63.86	4.00	0.12	0.15	26.74	4.39	3.34·10 ⁻⁹
g3	63.86	4.00	0.21	0.21	26.74	4.39	3.34·10 ⁻⁹
β	66.24	3.67	0.04	0.04	4.99	2.78	3.93·10 ⁻¹⁰
114	68.49	3.57	0.18	0.20	37.17	2.91	9.98·10 ⁻⁹
1114	68.53	3.93	0.02	0.01	20.16	2.77	4.94·10 ⁻⁹
1117	68.68	3.82	0.02	0.00	8.14	2.17	1.78·10 ⁻⁹
112	69.72	3.54	0.25	0.30	14.30	3.09	3.59·10 ⁻⁹
R1	69.82	3.81	0.19	0.23	76.51	3.37	1.06.10-8
R1	69.82	4.20	0.11	0.12	76.51	3.37	1.06·10 ⁻⁸

g2	70.76	5.27	0.19	0.19	13.06	2.59	3.15·10 ⁻⁹
1118	72.11	3.84	0.12	0.22	37.03	2.68	1.01·10 ⁻⁸
1116	73.12	3.63	0.04	0.02	15.50	2.66	3.69·10 ⁻⁹
12	73.17	3.33	0.27	0.30	49.60	2.52	1.43·10 ⁻⁸
13	74.65	3.57	0.27	0.28	28.21	2.94	7.71·10 ⁻⁹
15	75.04	3.66	0.27	0.29	21.33	1.64	6.00·10 ⁻⁹
115	75.36	3.67	0.20	0.20	21.96	2.12	5.81·10 ⁻⁹
113	75.73	4.07	0.25	0.26	25.29	1.61	7.08·10 ⁻⁹
14	78.76	3.71	0.28	0.29	32.21	2.38	9.07·10 ⁻⁹
11	102.96	4.44	0.26	0.27	22.26	3.02	5.89·10 ⁻⁹
111	103.07	4.44	0.25	0.25	30.87	2.29	8.49·10 ⁻⁹
10	129.51	5.30	0.03	0.03	3.05	1.78	4.61·10 ⁻¹⁰
9	129.77	5.32	0.11	0.11	3.98	1.47	7.94·10 ⁻¹⁰
R4	130.52	5.34	0.14	0.23	20.27	1.33	5.56·10 ⁻⁹
R5	133.76	5.34	0.21	0.27	24.89	2.37	6.81·10 ⁻⁹

Table S3: MD-derived order parameters S_{CH} , effective correlation times τ_{e} and $R_{1\rho}$ and R_1 relaxation rate constants calculated with Eq. S1, 4, 6 and 7 respectively for POPC with 30 mol% GM3 at 303 K. The relaxation value for each carbon used to calculate τ_{e} is the sum of the contributions from all individual bonded protons.

Carbon label	C-H pair	S _{CH}	$R_{1\rho}$ (s ⁻¹)	R_1 (s ⁻¹)	Sum $R_{1\rho}$ (s ⁻¹)	Sum R_1 (s ⁻¹)	$ au_{ m e}$ (s)
R18	C18S-H18S	-0.06	0.52	0.10	1.96	0.30	1.60.10-10
R18	C18S-H18T	-0.06	0.77	0.10	-	-	-
R18	C18S-H18U	-0.06	0.68	0.10	-	-	-
R16'	C16F-H16F	-0.04	0.16	0.10	0.48	0.31	2.19·10 ⁻¹¹
R16'	C16F-H16G	-0.04	0.17	0.10	-	-	-
R16'	C16F-H16H	-0.04	0.16	0.10	-	-	-
16'	C316-H16X	-0.04	0.14	0.10	0.52	0.28	2.73·10 ⁻¹¹
16'	C316-H16Y	-0.04	0.18	0.09	-	-	-
16'	C316-H16Z	-0.04	0.21	0.10	-	-	-
18	C218-H18R	-0.04	0.11	0.10	0.35	0.29	1.11.10-11
18	C218-H18S	-0.04	0.12	0.10	-	-	-
18	C218-H18T	-0.04	0.12	0.10	-	-	-
11	CT-HT1	-0.02	33.63	0.12	100.47	0.35	9.29·10 ⁻⁹
11	CT-HT2	-0.02	33.75	0.12	-	-	-
11	CT-HT3	-0.02	33.09	0.12	-	-	-
R17	C17S-H17S	-0.15	0.68	0.23	1.50	0.46	1.62.10-10
R17	C17S-H17T	-0.15	0.82	0.23	-	-	-
R15'	C15F-H15F	-0.15	0.88	0.23	1.55	0.45	1.70·10 ⁻¹⁰
R15'	C15F-H15G	-0.15	0.67	0.23	-	-	-
15'	C315-H15X	-0.11	0.54	0.22	1.03	0.44	9.68·10 ⁻¹¹
15'	C315-H15Y	-0.11	0.48	0.22	-	-	-
17	C217-H17R	-0.11	0.45	0.24	0.92	0.47	7.79·10 ⁻¹¹
17	C217-H17S	-0.11	0.47	0.23	-	-	-
3'	C33-H3X	-0.22	5.08	0.97	10.58	1.96	1.31·10 ⁻⁹
3'	С33-НЗҮ	-0.20	5.51	0.98	-	-	-
3	C23-H3R	-0.23	7.70	1.38	12.75	2.85	1.56·10 ⁻⁹
3	C23-H3S	-0.24	5.05	1.47	-	-	-
R3	C3S-H3S	-0.37	122.73	0.67	122.73	0.67	3.88·10 ⁻⁸

R6	C6S-H6S	-0.31	22.63	1.17	48.26	2.32	7.06·10 ⁻⁹
R6	C6S-H6T	-0.30	25.63	1.16			
R3'	C3F-H3F	-0.23	45.85	1.51	80.37	3.20	1.13·10 ⁻⁸
R3'	C3F-H3G	-0.14	34.53	1.69			
8	C28-H8R	-0.12	1.96	1.04	3.97	2.09	3.36·10 ⁻¹⁰
8	C28-H8S	-0.12	2.01	1.05	-	-	-
11	C211-H11R	-0.10	1.38	0.83	2.82	1.66	2.19·10 ⁻¹⁰
11	C211-H11S	-0.10	1.43	0.83	-	-	-
R4'	C4F-H4F	-0.26	11.54	1.38	18.94	2.82	2.48·10 ⁻⁹
R4'	C4F-H4G	-0.24	7.40	1.43	-	-	-
4	C24-H4R	-0.23	4.28	1.08	7.82	2.19	9.03·10 ⁻¹⁰
4	C24-H4S	-0.23	3.54	1.11	-	-	-
R5'	C5F-H5F	-0.27	9.22	1.01	14.31	2.03	1.90·10 ⁻⁹
R5'	C5F-H5G	-0.26	5.10	1.02	-	-	-
14	C214-H14R	-0.18	1.30	0.51	2.45	1.03	2.41·10 ⁻¹⁰
14	C214-H14S	-0.18	1.15	0.51	-	-	-
15	C215-H15R	-0.16	0.99	0.43	1.95	0.86	1.86·10 ⁻¹⁰
15	C215-H15S	-0.16	0.96	0.43	-	-	-
12'	C312-H12X	-0.20	1.54	0.47	3.06	0.93	3.43·10 ⁻¹⁰
12'	C312-H12Y	-0.20	1.52	0.47	-	-	-
4'	C34-H4X	-0.24	2.98	0.87	6.40	1.73	7.46·10 ⁻¹⁰
4'	C34-H4Y	-0.24	3.41	0.86	-	-	-
6	C26-H6R	-0.22	2.73	0.88	5.44	1.76	5.98·10 ⁻¹⁰
6	C26-H6S	-0.22	2.71	0.88	-	-	-
R13	C13S-H13S	-0.26	1.56	0.56	3.38	1.13	3.75·10 ⁻¹⁰
R13	C13S-H13T	-0.25	1.82	0.56	-	-	-
R12'	C12F-H12F	-0.23	1.70	0.48	3.19	0.96	3.59·10 ⁻¹⁰
R12'	C12F-H12G	-0.23	1.49	0.48	-	-	-
13'	C313-H13X	-0.18	1.12	0.40	2.29	0.80	2.41·10 ⁻¹⁰
13'	C313-H13Y	-0.18	1.17	0.40	-	-	-
13	C213-H13R	-0.17	1.27	0.59	2.65	1.17	2.52·10 ⁻¹⁰
13	C213-H13S	-0.17	1.38	0.59	-	-	-
5	C25-H5R	-0.25	3.59	0.93	6.80	1.87	7.94·10 ⁻¹⁰
5	C25-H5S	-0.25	3.21	0.94	-	-	-
R13'	C13F-H13F	-0.22	1.46	0.40	2.66	0.81	2.97·10 ⁻¹⁰
R13'	C13F-H13G	-0.22	1.20	0.40	-	-	-
R1 4	C14S-H14S	-0.25	1.43	0.49	3.32	0.98	3.82E·10 ⁻¹⁰
R1 4	C14S-H14T	-0.25	1.89	0.49	-	-	-
R15	C15S-H15S	-0.22	1.19	0.42	2.45	0.84	2.63·10 ⁻¹⁰
R15	C15S-H15T	-0.22	1.26	0.42	-	-	-
5'	C35-H5X	-0.25	2.89	0.75	6.05	1.51	7.23·10 ⁻¹⁰
5'	C35-H5Y	-0.25	3.16	0.76	-	-	-
12	C212-H12R	-0.16	1.47	0.68	2.87	1.36	2.63.10-10
12	C212-H12S	-0.16	1.41	0.68	-	-	-
10'	C310-H10X	-0.24	1.88	0.55	3.88	1.10	4.51·10 ⁻¹⁰
10'	C310-H10Y	-0.24	2.00	0.55	-	-	-
11'	C311-H11X	-0.22	1.60	0.51	3.27	1.03	3.65·10 ⁻¹⁰

11'	C311-H11Y	-0.22	1.67	0.52	-	-	-
R11	C11S-H11S	-0.28	2.19	0.70	4.84	1.39	5.71·10 ⁻¹⁰
R11	C11S-H11T	-0.27	2.65	0.70	-	-	-
R12	C12S-H12S	-0.28	2.13	0.62	5.04	1.24	6.17·10 ⁻¹⁰
R12	C12S-H12T	-0.27	2.91	0.62	-	-	-
R10'	C10F-H10F	-0.26	2.81	0.59	5.01	1.18	6.14·10 ⁻¹⁰
R10'	C10F-H10G	-0.26	2.20	0.59	-	-	-
R11'	C11F-H11F	-0.25	2.21	0.53	3.95	1.06	4.66·10 ⁻¹⁰
R11'	C11F-H11G	-0.25	1.74	0.53	-	-	-
7	C27-H7R	-0.21	2.49	0.86	4.94	1.73	5.25·10 ⁻¹⁰
7	C27-H7S	-0.21	2.45	0.87	-	-	-
6'	C36-H6X	-0.26	2.43	0.71	5.18	1.42	6.11·10 ⁻¹⁰
6'	C36-H6Y	-0.26	2.75	0.71	-	-	-
7'	С37-Н7Х	-0.26	2.24	0.65	5.00	1.30	5.97·10 ⁻¹⁰
7'	C37-H7Y	-0.26	2.76	0.65	-	-	-
8'	C38-H8X	-0.26	2.29	0.61	4.68	1.23	5.61·10 ⁻¹⁰
8'	C38-H8Y	-0.26	2.39	0.61	-	-	-
9'	С39-Н9Х	-0.24	2.05	0.58	4.22	1.16	4.95·10 ⁻¹⁰
9'	C39-H9Y	-0.24	2.18	0.58	-	-	-
R10	C10S-H10S	-0.29	3.37	0.78	7.71	1.56	9.89·10 ⁻¹⁰
R10	C10S-H10T	-0.29	4.34	0.78	-	-	-
R9	C9S-H9S	-0.28	3.47	0.86	7.59	1.73	9.48·10 ⁻¹⁰
R9	C9S-H9T	-0.28	4.12	0.86	-	-	-
R8'	C8F-H8F	-0.28	4.31	0.69	7.52	1.39	9.69·10 ⁻¹⁰
R8'	C8F-H8G	-0.28	3.20	0.70	-	-	-
R9'	C9F-H9F	-0.27	3.04	0.63	5.45	1.26	6.73·10 ⁻¹⁰
R9'	C9F-H9G	-0.27	2.41	0.63	-	-	-
R7	C7S-H7S	-0.27	9.30	1.27	19.04	2.55	2.56·10 ⁻⁹
R7	C7S-H7T	-0.27	9.75	1.27	-	-	-
R8	C8S-H8S	-0.29	5.81	1.13	13.39	2.25	1.77·10 ⁻⁹
R8	C8S-H8T	-0.29	7.58	1.12	-	-	-
R6'	C6F-H6F	-0.28	7.40	0.88	12.97	1.77	1.74·10 ⁻⁹
R6'	C6F-H6G	-0.27	5.56	0.89	-	-	-
R7'	C7F-H7F	-0.28	4.87	0.76	8.39	1.54	1.08·10 ⁻⁹
R7'	C7F-H7G	-0.28	3.51	0.77	-	-	-
R16	C16S-H16S	-0.20	0.95	0.31	2.07	0.63	2.29·10 ⁻¹⁰
R16	C16S-H16T	-0.20	1.11	0.31	-	-	-
R14'	C14F-H14F	-0.18	1.02	0.32	1.99	0.64	2.13·10 ⁻¹⁰
R14'	C14F-H14G	-0.18	0.97	0.32	-	-	-
14'	C314-H14X	-0.15	0.90	0.31	1.72	0.62	1.78·10 ⁻¹⁰
14'	C314-H14Y	-0.15	0.82	0.31	-	-	-
16	C216-H16R	-0.15	0.87	0.33	1.60	0.67	1.56·10 ⁻¹⁰
16	C216-H16S	-0.15	0.73	0.33	-	-	-
2'	C32-H2X	-0.26	8.62	1.07	19.13	2.15	2.58·10 ⁻⁹
2'	C32-H2Y	-0.24	10.50	1.08	-	-	-
2	C22-H2R	-0.08	23.23	1.59	41.21	3.18	5.41·10 ⁻⁹
2	C22-H2S	-0.13	17.97	1.59	-	-	-

R2'	C2F-H2F	-0.12	147.48	1.23	245.56	2.45	3.41·10 ⁻⁸
R2'	C2F-H2G	-0.10	98.07	1.21	-	-	-
1113	C3-H31	0.17	220.31	1.39	388.61	2.99	5.59·10 ⁻⁸
1113	C3-H32	-0.08	168.30	1.59	-	-	-
1115	C5-H5	0.10	211.32	1.49	211.32	1.49	5.92·10 ⁻⁸
R2	C2S-H2S	-0.38	125.34	0.66	125.34	0.66	4.00·10 ⁻⁸
γ	C13-H13A	0.01	1.57	1.36	4.72	4.08	1.44·10 ⁻¹⁰
γ	C13-H13B	0.01	1.56	1.36	-	-	-
γ	C13-H13C	0.01	1.60	1.36	-	-	-
γ	C14-H14A	0.01	1.64	1.36	4.95	4.08	1.65·10 ⁻¹⁰
γ	C14-H14B	0.01	1.66	1.36	-	-	-
γ	C14-H14C	0.02	1.65	1.36	-	-	-
γ	C15-H15A	0.01	1.62	1.36	4.81	4.08	1.52·10 ⁻¹⁰
γ	C15-H15B	0.01	1.56	1.36	-	-	-
γ	C15-H15C	0.01	1.63	1.36	-	-	-
α	C11-H11A	0.03	7.67	2.14	15.12	4.28	1.68·10 ⁻⁹
α	C11-H11B	0.02	7.45	2.14	-	-	-
16	C6-H61	0.35	33.12	1.68	109.15	3.43	1.80·10 ⁻⁸
16	C6-H62	0.06	76.03	1.75	-	-	-
116	C6-H61	0.13	59.61	1.85	105.50	3.83	1.36·10 ⁻⁸
116	C6-H62	-0.01	45.89	1.98	-	-	-
g1	C1-HX	-0.20	30.66	1.74	83.92	3.42	1.08·10 ⁻⁸
g1	C1-HY	-0.04	53.26	1.68	-	-	-
1119	C9-H91	-0.08	54.61	1.98	84.22	3.91	1.23·10 ⁻⁸
1119	C9-H92	-0.07	29.61	1.93	-	-	-
g3	СЗ-НА	-0.24	20.83	1.93	41.44	3.88	5.67·10 ⁻⁹
g3	СЗ-НВ	-0.25	20.61	1.95	-	-	-
β	C12-H12A	-0.09	8.03	2.12	15.55	4.25	1.75·10 ⁻⁹
β	C12-H12B	-0.09	7.52	2.13	-	-	-
114	C4-H4	0.17	319.71	1.01	319.71	1.01	9.15·10 ⁻⁸
1114	C4-H4	0.03	154.54	1.52	154.54	1.52	4.23·10 ⁻⁸
1117	С7-Н7	-0.13	162.89	1.35	162.89	1.35	4.56·10 ⁻⁸
112	C2-H2	-0.29	119.75	1.35	119.75	1.35	3.59·10 ⁻⁸
R1	C1S-H1S	-0.32	140.57	0.66	257.75	1.34	4.12·10 ⁻⁸
R1	C1S-H1T	-0.37	117.18	0.68	-	-	-
g2	C2-HS	-0.22	29.68	1.79	29.68	1.79	8.22·10 ⁻⁹
1118	C8-H8	0.15	88.16	1.80	88.16	1.80	2.47·10 ⁻⁸
1116	C6-H6	0.16	260.72	1.48	260.72	1.48	7.42·10 ⁻⁸
12	C2-H2	-0.36	112.98	0.91	112.98	0.91	3.54·10 ⁻⁸
13	C3-H3	-0.36	112.67	0.92	112.67	0.92	3.52·10 ⁻⁸
15	C5-H5	-0.37	105.58	0.92	105.58	0.92	3.34·10 ⁻⁸
115	C5-H5	-0.27	126.71	1.37	126.71	1.37	3.75·10 ⁻⁸
113	C3-H3	-0.29	119.96	1.39	119.96	1.39	3.58·10 ⁻⁸
14	C4-H4	-0.36	105.55	0.95	105.55	0.95	3.31·10 ⁻⁸
11	C1-H1	-0.37	109.45	0.89	109.45	0.89	3.47·10 ⁻⁸
1	C1-H1	-0.27	136.38	1.37	136.38	1.37	4.02·10 ⁻⁸
10	C210-H101	-0.06	2.08	1.39	2.08	1.39	2.87·10 ⁻¹⁰

9	С29-Н91	-0.07	2.12	1.20	2.12	1.20	3.36·10 ⁻¹⁰
R4	C4S-H4S	-0.16	103.21	1.35	103.21	1.35	2.88·10 ⁻⁸
R5	C5S-H5S	-0.16	102.43	1.39	102.43	1.39	2.86·10 ⁻⁸

Table S4: NMR-derived order parameters $|S_{CH}|$, effective correlation times τ_e and $R_{1\rho}$ and R_1 relaxation rateconstants for POPC at 303 K.

Carbon label	$\delta^{ m 13}$ C (ppm)	$\delta^{ extsf{1}}$ H (ppm)	$ S_{\rm CH} $ (manual)	S _{CH} (fit)	$R_{1\rho}$ (s ⁻¹)	R_1 (s ⁻¹)	$ au_{ m e}$ (s)
18,16'	14	0.88	0.00	0.02	1.62	0.35	1.24·10 ⁻¹⁰
17,15'	22.82	1.29	0.06	0.07	2.65	0.63	2.99·10 ⁻¹⁰
3,3'	25.09	1.59	0.18	0.18	9.22	2.22	1.07·10 ⁻⁹
8	27.37	2.02	0.11	-	-	-	-
11	27.52	2.02	0.05	-	-	-	-
4	29.39	1.32	0.18	-	-	-	-
14,15	29.62	1.32	0.08	-	-	-	-
12'	29.76	1.32	0.10	-	-	-	-
4'	29.76	1.32	0.19	-	-	-	-
6	29.76	1.32	0.16	-	-	-	-
13,13'	29.91	1.32	0.09	-	-	-	-
5	29.91	1.32	0.18	-	-	-	-
5'	30.02	1.32	0.19	-	-	-	-
12	30.02	1.32	0.09	-	-	-	-
10'	30.13	1.32	0.14	-	-	-	-
11'	30.13	1.32	0.13	-	-	-	-
7	30.24	1.32	0.14	-	-	-	-
6'	30.37	1.32	0.18	0.19	15.78	1.32	2.10·10 ⁻⁹
7'	30.43	1.32	0.18	0.19	15.78	1.32	2.10·10 ⁻⁹
8'	30.46	1.32	0.16	0.19	15.78	1.32	2.10·10 ⁻⁹
9'	30.52	1.32	0.16	0.19	15.78	1.32	2.10·10 ⁻⁹
16,14'	32.19	1.26	0.08	0.09	3.54	0.82	4.03·10 ⁻¹⁰
2,2'	34.16	2.31	0.19	0.17	13.89	2.85	1.63·10 ⁻⁹
γ	54.23	3.23	0.00	0.01	2.41	2.09	7.44·10 ⁻¹¹
α	59.64	4.27	0.05	0.06	4.55	2.40	3.73·10 ⁻¹⁰
g1	63.18	4.22	0.14	0.22	15.67	4.28	1.07·10 ⁻⁹
g1	63.18	4.42	0.21	0.24	15.67	4.28	2.34·10 ⁻⁹
g3	63.82	3.99	0.14	0.15	18.97	4.68	2.13·10 ⁻⁹
g3	63.82	3.99	0.09	0.01	18.97	4.68	2.16·10 ⁻⁹
В	66.19	3.67	0.04	0.05	3.84	2.35	2.81·10 ⁻¹⁰
g2	70.78	5.26	0.20	0.20	10.07	3.15	2.19·10 ⁻⁹
10	129.49	5.3	0.03	0.02	2.41	1.87	2.70·10 ⁻¹⁰
9	129.84	5.32	0.09	0.11	3.67	1.65	6.68·10 ⁻¹⁰

Carbon label	C-H pair	S _{CH}	$R_{1\rho}$ (s ⁻¹)	R_1 (s ⁻¹)	Sum $R_{1\rho}$ (s ⁻¹)	Sum R_1 (s ⁻¹)	$ au_{ m e}$ (s)
16'	C316-H16X	-0.03	0.11	0.10	0.33	0.29	9.07·10 ⁻¹²
16'	C316-H16Y	-0.03	0.11	0.10	-	-	-
16'	C316-H16Z	-0.03	0.11	0.10	-	-	-
18	C218-H18R	-0.03	0.10	0.10	0.31	0.29	7.74·10 ⁻¹²
18	C218-H18S	-0.03	0.10	0.10	-	-	-
18	C218-H18T	-0.03	0.11	0.10	-	-	-
15'	C315-H15X	-0.09	0.30	0.24	0.59	0.48	3.14.10-11
15'	C315-H15Y	-0.09	0.29	0.24	-	-	-
17	C217-H17R	-0.08	0.30	0.24	0.60	0.49	3.13.10-11
17	C217-H17S	-0.08	0.30	0.24	-	-	-
3'	C33-H3X	-0.18	2.20	0.98	4.53	1.96	4.37·10 ⁻¹⁰
3'	C33-H3Y	-0.16	2.34	0.98	-	-	-
3	C23-H3R	-0.20	3.38	1.31	5.98	2.69	5.76·10 ⁻¹⁰
3	C23-H3S	-0.21	2.61	1.38	-	-	-
8	C28-H8R	-0.10	1.48	1.02	2.96	2.03	1.99·10 ⁻¹⁰
8	C28-H8S	-0.10	1.48	1.01	-	-	-
11	C211-H11R	-0.08	1.05	0.85	2.12	1.70	1.18·10 ⁻¹⁰
11	C211-H11S	-0.08	1.07	0.85	-	-	-
4	C24-H4R	-0.20	2.25	1.01	4.32	2.05	3.98·10 ⁻¹⁰
4	C24-H4S	-0.20	2.07	1.04	-	-	-
14	C214-H14R	-0.13	0.79	0.56	1.58	1.12	1.07·10 ⁻¹⁰
14	C214-H14S	-0.13	0.80	0.56	-	-	-
15	C215-H15R	-0.12	0.63	0.46	1.24	0.93	7.68·10 ⁻¹¹
15	C215-H15S	-0.12	0.62	0.46	-	-	-
12'	C312-H12X	-0.15	0.77	0.52	1.52	1.04	1.06.10-10
12'	C312-H12Y	-0.16	0.75	0.52	-	-	-
4'	C34-H4X	-0.21	1.76	0.84	3.65	1.68	3.45·10 ⁻¹⁰
4'	C34-H4Y	-0.20	1.89	0.84	-	-	-
6	C26-H6R	-0.19	1.80	0.88	3.57	1.75	3.22·10 ⁻¹⁰
6	C26-H6S	-0.19	1.77	0.88	-	-	-
13'	C313-H13X	-0.13	0.62	0.45	1.22	0.89	7.76·10 ⁻¹¹
13'	C313-H13Y	-0.13	0.60	0.45	-	-	-
13	C213-H13R	-0.13	0.86	0.63	1.73	1.26	1.11·10 ⁻¹⁰
13	C213-H13S	-0.13	0.87	0.63	-	-	-
5	C25-H5R	-0.21	2.15	0.90	4.14	1.82	4.01·10 ⁻¹⁰
5	C25-H5S	-0.21	1.99	0.92	-	-	-
5'	C35-H5X	-0.21	1.66	0.75	3.42	1.51	3.31·10 ⁻¹⁰
5'	C35-H5Y	-0.20	1.76	0.75	-	-	-
12	C212-H12R	-0.12	1.00	0.72	1.99	1.44	1.28.10-10
12	C212-H12S	-0.12	1.00	0.72	-	-	-
10'	C310-H10X	-0.18	1.10	0.61	2.14	1.22	1.78·10 ⁻¹⁰
10'	C310-H10Y	-0.18	1.04	0.61	-	-	-
11'	C311-H11X	-0.17	0.88	0.58	1.76	1.15	1.30.10-10

Table S5: MD-derived order parameters S_{CH} , effective correlation times τ_e and $R_{1\rho}$ and R_1 relaxation rate constants calculated with Eq. S1, 4, 6 and 7 respectively for POPC at 303 K. The relaxation value for each carbon used to calculate τ_e is the sum of the contributions from all individual bonded protons.

11'	C311-H11Y	-0.17	0.88	0.58	-	-	-
7	C27-H7R	-0.18	1.68	0.86	3.31	1.73	2.86·10 ⁻¹⁰
7	C27-H7S	-0.18	1.63	0.87	-	-	-
6'	C36-H6X	-0.22	1.53	0.72	3.15	1.44	3.01·10 ⁻¹⁰
6'	C36-H6Y	-0.22	1.62	0.72	-	-	-
7'	C37-H7X	-0.21	1.40	0.68	2.79	1.36	2.58·10 ⁻¹⁰
7'	C37-H7Y	-0.21	1.40	0.68	-	-	-
8'	C38-H8X	-0.21	1.28	0.66	2.56	1.32	2.30.10-10
8'	C38-H8Y	-0.21	1.28	0.66	-	-	-
9'	C39-H9X	-0.19	1.17	0.64	2.33	1.28	2.00.10-10
9'	C39-H9Y	-0.19	1.16	0.64	-	-	-
14'	C314-H14X	-0.12	0.45	0.34	0.90	0.69	5.29·10 ⁻¹¹
14'	C314-H14Y	-0.12	0.45	0.34	-	-	-
16	C216-H16R	-0.11	0.48	0.36	0.97	0.72	5.97·10 ⁻¹¹
16	C216-H16S	-0.11	0.49	0.36	-	-	-
2'	C32-H2X	-0.24	3.10	1.11	6.80	2.23	7.50·10 ⁻¹⁰
2'	C32-H2Y	-0.21	3.71	1.12	-	-	-
2	C22-H2R	-0.07	7.08	1.62	12.98	3.30	1.53·10 ⁻⁹
2	C22-H2S	-0.11	5.90	1.68	-	-	-
γ	C13-H13A	0.01	1.04	0.98	3.10	2.94	7.18·10 ⁻¹¹
γ	C13-H13B	0.01	1.03	0.98	-	-	-
γ	C13-H13C	0.01	1.03	0.98	-	-	-
γ	C14-H14A	0.01	1.03	0.98	3.09	2.94	7.08.10-11
γ	C14-H14B	0.01	1.02	0.98	-	-	-
γ	C14-H14C	0.01	1.03	0.98	-	-	-
γ	C15-H15A	0.01	1.03	0.98	3.08	2.94	7.03·10 ⁻¹¹
γ	C15-H15B	0.01	1.03	0.98	-	-	-
γ	C15-H15C	0.01	1.03	0.98	-	-	-
α	C11-H11A	0.03	2.40	1.78	4.82	3.57	3.09·10 ⁻¹⁰
α	C11-H11B	0.03	2.42	1.79	-	-	-
g1	C1-HX	-0.18	8.42	2.43	23.51	4.76	2.58·10 ⁻⁹
g1	C1-HY	-0.04	15.09	2.33	-	-	-
g3	C3-HA	-0.23	7.62	2.15	14.39	4.37	1.64·10 ⁻⁹
g3	СЗ-НВ	-0.25	6.78	2.21	-	-	-
β	C12-H12A	-0.08	2.33	1.75	4.64	3.50	2.91·10 ⁻¹⁰
β	C12-H12B	-0.08	2.31	1.75	-	-	-
g2	C2-HS	-0.20	8.33	2.56	8.33	2.56	1.91·10 ⁻⁹
10	C210-H101	-0.05	1.63	1.34	1.63	1.34	1.69·10 ⁻¹⁰
9	C29-H91	-0.06	1.64	1.18	1.64	1.18	2.04·10 ⁻¹⁰

References

- 1. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, *SoftwareX*, 2015, **1**, 19-25.
- J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell Jr and R. W. Pastor, *J. Phys. Chem. B*, 2010, **114**, 7830-7843.
- 3. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey and M. Klein, *J. Chem. Phys.*, 1983, **79**, 926-935.
- 4. A. D. MacKerell Jr, D. Bashford, M. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo and S. Ha, *J. Phys. Chem. B*, 1998, **102**, 3586-3616.
- J. Lee, D. S. Patel, J. Ståhle, S.-J. Park, N. R. Kern, S. Kim, J. Lee, X. Cheng, M. A. Valvano and O. Holst, *J. Chem. Theory Comput.*, 2018, **15**, 775-786.
 T. Darden, G. York and L. Pedersen, *J. Chem. Phys.*, 1993, **98**, 10089.
- 6. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, *J. Comput. Chem.*, 1997, **18**, 1463-1472.
- 7. S. Miyamoto and P. A. Kollman, J. Comput. Chem, 1992, **13**, 952-962.
- 8. S. Nose, Mol. Phys., 1984, 52, 255-268.
- 9. W. G. Hoover, Phys. Rev. A, 1985, **31**, 1695-1697.
- 10. M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182-7190.
- A. Botan, F. Favela-Rosales, P. F. J. Fuchs, M. Javanainen, M. Kanduč, W. Kulig, A. Lamberg, C. Loison, A. Lyubartsev, M. S. Miettinen, L. Monticelli, J. Määttä, O. H. S. Ollila, M. Retegan, T. Róg, H. Santuz and J. Tynkkynen, *J. Chem. Phys. B*, 2015, **119**, 15075-15088.
- 12. The NMRlipids project, <u>http://nmrlipids.blogspot.com</u>, (accessed May, 2022).
- 13. N. Kucerka, J. F. Nagle, J. N. Sache, S. E. Feller, J. Pencer, A. Jackson and J. Katsaras, *Biophys. J.*, 2008, N. Kucerka, **95**, 2356-2367.
- 14. X. Zhuang, J. R. Makover, W. Im and J. B. Klauda, BBA, 2014, 1838, 2520-2529.
- 15. H. I Petrache, S. E. Feller and J. F. Nagle, *Biophys. J.*, 1997, 70, 2237-2242.
- 16. N. Kucerka, M-P Nieh, and J. Katsaras, BBA, 2011, 1808, 2761-2771.
- 17. A. Bax, D. G. Davis and S. K. Sarkar, J. Magn. Reson., 1985, 63, 230-234.
- 18. S. V. Dvinskikh, V. Castro and D. Sandström, Phys. Chem. Chem. Phys., 2005, 7, 607-613.
- 19. T. M. Ferreira, F. Coreta-Gomes, O. S. Olila, M. J. Moreno, W. L. Vaz and D. Topgaard, *Phys. Chem. Chem. Phys.*, 2013, **15**, 1976-1989.
- 20. T. M. Ferreira, B. Medronho, R. W. Martin and D. Topgaard, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6033-6038.