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1. Materials and Equipment

All solvents were purchased from common commercial sources. The melting points of the
synthesized compounds were determined in open capillaries using Barnstead Electrothermal
IA9100. Fluorimetric measurements were applied on a Perkin Elmer LS55 Spectrometer and
electronic excitation spectra were recorded on a Shimadzu UV1800 spectrophotometer. Mass
spectral analyses were performed on an Agilent 6224 LC/MS spectrometer. 'H-NMR spectra
were recorded on a VARIAN Mercury 400 MHz spectrometer. The 'H NMR chemical shifts
(8) are given in ppm downfield from Me,4Si, determined by chloroform (& = 7.26 ppm). 13C
NMR spectra were recorded on a VARIAN Mercury 100 MHz spectrometer. The 3C NMR
chemical shifts (0) are reported in ppm with the internal CDCl; 6 77.0 ppm as standard. A
Perkin—Elmer 100 spectrometer (equipped with an ATR unit) was used for FT-IR spectra of the
compounds in the range of 6504000 cm™'.

2. Determination of Fluorescence Quantum Yields (®r)

The luminescence quantum yields of the aza-BODIPYs were measured by the comparative
method using the analogue compound (3,5-Diphenyl-1H-pyrrol-2-yl)(3,5-diphenylpyrrol-2-
ylidene)amine, @=0.34 in CHC]l;) [1]. The formula used is as follows [2] (Eq. 1):

F .AStd.n2

2
Fq-A ngg (1)

®, = ®(Std)

Pp(Std) denotes the fluorescence quantum yield of the reference compound, while F and Fgy
show the areas under the emission curves of the samples and the reference, respectively. A and
Agyq are the absorbance values of the samples and the reference compound at their excitation
wavelengths. n and ngy denote the refractive indices of the solvents. The concentrations of the
aza-BODIPY solutions were fixed at 5 x 10° M in chloroform. Among the synthesized
compounds, only compound 4 gave very low fluorescence peak (®g: 0.003). Compounds 3 and
5 have no emissions. The emission spectrum of the compound 4 is given in figure S1 and the

photophysical parameters are given in table 1.



Table 1 Photophysical parameters of compounds 3, 4, and 5

FWHM | Stokes Shifts
Compound | Agbs(nm) Aemem) | € [M!em] ()
(nm) (cm)
3 331/653 - 38600/26800 | 75/139 - -
304/335 48000/44000
4 823 - 176/74 0.003
647/749 48600/57000
5 314/674 - 52400/57800 163 - -
s i
<
200 300 400 500 600 700 800 900
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Figure S1. Emission spectra of the compound 4

3. Determination of Singlet Oxygen Quantum Yields (®,)

To investigate the singlet oxygen generation properties of the compounds, experiments were
carried out in dichloromethane (DCM) with 1,3-diphenylisobenzofuran (known as DPBF) as a

chemical single oxygen trap [3].

The absorbance of DPBF was set at around 1.0 at 414 nm, and the absorbance of the sensitizers
in DCM solution was set between 0.2 and 0.3. Both the aza-BODIPY's and the single oxygen
trap (DPBF) were excited by a single wavelength (630 nm) of light using a Perkin Elmer L5S55
fluorometer for 2 seconds at every turn. Methylene blue (MB in DCM, M = 0.57) was used as

a standard compound for the determination of the singlet oxygen quantum yields (®,) by
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plotting the AOD of 1,3-diphenylisobenzofuran against the irradiation time. The following

equation was used [3].

”lsam F std
cDAsam = @Astd
m F
std

sam

2

In equation 2, std and sam denote the MB and aza-BODIPY compounds, respectively. The
absorption correction factor (F) was calculated by 1-10-°P. The OD refers to the optical density,
showing the absorbance value. The varying absorption of the DPBF at 414 nm gave the m value
as the slope of the graph depending on the irradiation time. Right after the photosensitizers were
exposed to monochromatic light at their absorption maxima, the UV/Vis spectra were taken for
each measurement. The change in the maximum absorbance values of DPBF at 414 nm was

monitored by plotting them against the irradiation time.

Singlet oxygen quantum efficiencies were measured with 1,3-Diphenylisobenzofuran (DPBF)
as a chemical singlet oxygen trap. Absorption spectra of 1,3-diphenylisobenzofuran (DPBF) as
a chemical singlet oxygen probe upon irradiation in the presence of compound 5 were given in
Figure S2.a and the change in the absorbance of DPBF under illumination in the presence of

methylene blue (MB) as standard and compound 5 in CH,Cl, was given in Figure S2.b.
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Figure S2. a) Absorption spectra of DPBF upon irradiation in the presence of the compound 5
for 14 s (recorded at 2 s interval), b) The change in the absorbance of DPBF under illumination
(Aexe = 630 nm) at 414 nm in the presence of methylene blue (MB) as standard and the
compound 5 in CH,Cl,.

As can be seen from the related graphs, the absorbance band of the DPBF was nearly untouched
in the presence of brominated compound S while a drastic decrease with the methylene blue. In

contrast to general heavy atoms substituted aza-BODIPYSs, no singlet oxygen generation was



observed. The molecular structures are closely linked to heavy atoms such as bromine and
iodine to provide functionality in singlet oxygen production. This result may reveal that all
systems containing heavy atoms cannot be beneficial for singlet oxygen production. The
resistance of compound S to produce singlet oxygen that could be related to the triplet formation
was investigated by using ultrafast pump-probe spectroscopy experiments and theoretical

calculations.

“The triplet state of the aza-BODIPY's with triphenylamine moieties at the -1,-7 positions of the
core could be quenched by the efficient intramolecular charge transfer between the planar core
structure and triphenyl amine groups. In such a case, no intersystem crossing can be expected
to be observed. Indeed, it is supportive that compound 5 does not produce singlet oxygen in the
presence of two bromine atoms. From the point of view of theoretical calculation, since the
value of CT percentage (66%) of compound 5 is significantly larger than the LE percentage
(39%), It can be concluded that there is a stronger charge transfer from triphenylamine groups
to indacene core in compound 5. Similarly, based on the pump-probe spectroscopy
measurements, there is regardless effect of bromine atoms bounded to -2,-6 positions of the
aza-BODIPY core to the generation of triplet excited state. The transition to the triplet state is
not allowed due to dominating of triphenylamine groups leading to the intramolecular charge
transfer process. One can say that the ct level and the triplet level are in competition with each
other and prefer ct in the presence of triphenylamine groups following excitation of the

molecule.*

In our previous work, we synthesized -2, -6 dibromide substituted aza-BODIPYs AA1 and CC1
(scheme 2) with high singlet oxygen quantum yields (71% and 74% against methylene blue,
respectively)[4]. In addition to the previous compound, we have designed novel compounds 4
and 5 to investigate the relationship between charge transfer and singlet oxygen generation
efficiency for aza-BODIPYs. Although we expected high singlet oxygen quantum yields due

to the heavy atoms effect of bromine at the -2,6 position of compound 5, we have not observed



4. Femtosecond Transient Absorption Spectroscopy Studies
The transient absorption data was fitted using an exponential equation which is given below.

t—tgy t-tg

2
S —=2 _ _ IRF
S(t)=e (t?’) *ZiAie ti ,tp—m

Where IRF is the width of instrument response function (full width half maximum), ¢, is time zero, 4; and ¢; are
amplitudes and decay times respectively, * is convolution.



5. Characterization
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Figure S4. 'THNMR for compound 3 in CDCl; at 400 MHz
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Figure S5. 'HNMR for compound 4 in CDCl; at 400 MHz
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Figure S6. 'HNMR for compound 5 in CDCl; at 400 MHz
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