Understanding the tunable sodium storage performance in pillared MXene: A first-principles study

Li Dai, Jiahao Zhao, Qin Li, Maohui Chen, Haibo Li, Konggang Qu, Rui Li* Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China *Corresponding authors.

Rui Li

E-mail: lirui@lcu.edu.cn

Supplementary Material

Layer spacing (Å)	Layer spacing (Å) (after optimization)					
(Initial)	Ti ₂ CO ₂ -SL	Ti ₂ CO ₂ -DL	Ti₃C₂O₂-SL	Ti ₃ C ₂ O ₂ -DL		
3	3.10	3.09	3.08	3.06		
4	4.07	4.08	4.06	4.05		
5	5.05	5.06	5.05	5.06		
6	6.04	6.04	6.08	6.04		
7	7.02	7.03	7.03	7.03		
8	8.03	8.02	8.02	8.03		
9	9.01	9.01	9.00	9.02		
10	10.00	10.01	10.01	10.01		
12	12.00	12.01	12.00	12.01		

Table S1. Layer spacing before and after enforcing the optimization process of selected structures.

Layer	E _a (eV per Na)							
spacing	Ti ₂ CO ₂ -SL				Ti₃C₂	O2-SL		
(Å)	1/16 ML	1/9 ML	1/4 ML	1 ML	1/16 ML	1/9 ML	1/4 ML	1 ML
3	4.16	4.20	3.81	3.72	4.61	4.53	4.27	3.82
3.5	4.54	4.35	4.06	3.93	4.89	4.82	4.46	3.97
4	4.89	4.66	4.50	4.07	5.07	5.00	4.70	4.13
4.5	4.57	4.51	4.05	3.49	4.92	4.90	4.51	3.56
5	4.21	4.11	3.58	3.21	4.63	4.58	4.32	3.35
5.5	3.89	3.82	3.49	2.37	4.41	4.38	4.10	2.83
6	3.82	3.73	3.41	2.01	4.33	4.31	3.96	2.35
7	3.75	3.69	3.39	1.97	4.21	4.12	3.74	2.26
8	3.73	3.63	3.39	1.96	4.18	4.08	3.69	2.24
9	3.73	3.63	3.37	1.95	4.17	4.06	3.66	2.24

Table S2. The adsorption energy of Na on selected structures with different layer spacing.

Table S3. Calculated in-plane planar elastic constants C_{11} and Poisson's ratio (v) of MXene-Na system at different layer spacing. The data in brackets correspond to the double Na-atomic layers adsorption system.

Layer	C ₁₁ (N/m)		v		
spacing (Å)	Ti ₂ CO ₂ -Na	Ti ₃ C ₂ O ₂ -Na	Ti ₂ CO ₂ -Na	Ti₃C₂O₂-Na	
3	349	421	0.296	0.279	
4	280	388	0.278	0.257	
5	278 (336)	381 (438)	0.212 (0.328)	0.208 (0.298)	
6	286 (314)	385 (406)	0.236 (0.288)	0.214 (0.286)	
7	287 (301)	393 (389)	0.242 (0.269)	0.231 (0.272)	
8	291 (286)	395 (375)	0.250 (0.260)	0.239 (0.255)	
9	292 (274)	394 (379)	0.255 (0.259)	0.243 (0.257)	

Lover encoing (Å)	E _a (eV per Na)			
Layer spacing (A)	Ti ₂ CO ₂ (C-Ti stacking)	Ti ₃ C ₂ O ₂ (C-C stacking)		
3	3.21	3.89		
4	3.66	4.13		
5	2.69	3.34		
6	1.93	2.3		
7	1.91	2.19		
8	1.9	2.18		

Table S4. The adsorption energy of Na on selected structures with different layer spacing at 1 ML Na coverage.

Table S5. The normalized values of all the characteristic indicators by the Minmax standardization method. The normalized equation for E_a and C_{11} is X = (x - min)/(max - min), and for EB_d and v is X = (max - x)/(max - min). All EB_d data (C-C stacking and C-Ti stacking) were combined together for normalized calculation.

MXene	Layer	Ea	EBd (C-C	EB₀ (C-Ti	C ₁₁	v
	spacing (Å)		stacking)	stacking)		
Ti ₂ CO ₂	5	0.48	0	1	1	0
	6	0.76	0.55	0.90	0.57	0.59
	7	1	0.65	0.75	0.30	0.87
	8	0	0.68	0.71	0	1
$Ti_3C_2O_2$	5	0.44	0	1	1	0
	6	1	0.67	0.85	0.50	0.28
	7	0	0.71	0.81	0.22	0.60
	8	0.33	0.75	0.77	0	1

Fig. S1. Distribution of the adhesion energy between MXene layers with different layer spacing for double-layer MXene models.

Fig. S2. Change of the distance in the x-y plane between Na and the initial and final adsorption site along the MD simulation time. (a) The initial and final adsorption site is C in Ti₂CO₂, (b) The initial adsorption site is Ti and the final adsorption site is C site in Ti₂CO₂, (c) The initial adsorption site is O and the final adsorption site is C in Ti₂CO₂, (d) The initial and final adsorption site is C in Ti₃C₂O₂, (e) The initial adsorption site is Ti and the final adsorption site is C in Ti₃C₂O₂, (f) The initial adsorption site is O and the final adsorption site is Ti and the final adsorption site is C in Ti₃C₂O₂, (f) The initial adsorption site is O and the final adsorption site is C in Ti₃C₂O₂.

Fig. S3. Change of the Na adsorption energy with layer spacing in double-layer MXene models.

Fig. S4. Schematic diagram illustrating double Na-atomic layers adsorption in $1 \times 1 \text{ MXene model}$ (a) Ti₂CO₂ and (b) Ti₃C₂O₂.

Fig. S5. The interaction energy between two Na atoms as a function of Na-Na distance.