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Experimental Methods and Calculation Details

Materials and general methods

Solvents were purchased from various commercial sources and used without further purification unless otherwise stated. Spectroscopic grade solvents 

were used in the UV/Vis and fluorescence spectroscopic measurements. Analytical thin-layer chromatography (TLC) was performed using pre-coated 

TLC plates with silica gel 60 F254 or with aluminum oxide 60 F254 neutral. Flash column chromatography was performed using silica (230-400 mesh) 

gel or alumina oxide (80-200 mesh) as the stationary phases. 1H NMR spectra were acquired on NMR Spectrometer (Bruker, AVANCE III, 400MHz, 

Germanny) to confirm its structure. All chemical shifts were reported in δ units relative to tetramethylsilane. DMSO was treated with alumina gel prior 

to use. Electronic absorption spectra were recorded by a UV-Vis spectrophotometer (Shimadzu, 3600-Plus, Japan). Emission and excitation spectra were 

obtained from fluorescence spectrophotometers (HORIBA Fluoramax-4, USA and Hitachi F-7000, Japan ).

Synthesis of HBO-p-CH3 Compound. 
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2-Hydroxy-5-methylbenzaldehyde (4.0 mmol), 2-aminophenol (4.4 mol) and catalytic dose of silver nitrate (AgNO3) were mixed in a 50 mL round-

bottom flask with 20 mL dimethylsulfoxide (DMSO). Then, the mixture was stirred for 4 h in a water bath condition (35°C). The TLC template 

(PE:EA=3:1) was employed to monitor the progress of the reaction. The mixture was cooled to room temperature after the reaction was finished and then 

60 mL dichloromethane (DCM) was added to the above room mixture, and then a large amount of saturated salt water was applied to extract the organic 

layer, which was span and dried to obtain the pure (Z)-2-(((2-hydroxyphenyl)imino)methyl)-4-methylphenol. Next, (Z)-2-(((2-

hydroxyphenyl)imino)methyl)-4-methylphenol and 2,3-dichloro-5,6-difluoro-p-benzoquinone (DDQ) in a molar ratio of 1:1.1 were mixed in 60 mL 

dichloromethane. Similarly, the reaction was stirred at 40 °C for 4 h and monitored by TLC (PE:EA=5:1). Finally, by filtration the filtrate was retained 

and spin-dried and recrystallized with methanol to obtain the target product HBO-pCH3. Figure S1 showed the 1H NMR of HBO-pCH3 in DMSO-d6 

(11.03(s,1H), 7.87(dt, J = 9.4, 3.1 Hz, 3H), 7.50 (m, 2H), 7.36 (dd, J = 8.4, 2.3 Hz, 1H), 7.06(d, J = 8.4 Hz, 1H), 2.36 (s, 3H). 

Calculation
All the calculations are performed using the Gaussian 09W program suiteS1. The geometries were optimized by DFT and TDDFT in the ground 

state and excited state, respectively, using the basis set 6-311+G(d,p) with Becke’s three-parameter exchange functional accompanying the Lee-Yang-

Parr nonlocal correlation functional (B3LYP)S2-S3 and the solvent effects with the polarizable continuum model (PCM)S4. In addition, to avoid the 

misrepresentation of weak interactions, density functional theory including dispersion correction (DFT-D3)S5-S6 was considered.
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Figure S1. The 1HNMR of HBO-pCH3 in DMSO-d6
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Figure S2. Optimized structures and relative energy(in kcal/mol) of enol and keto HBO-pCH3 as well as deprotonation forms in S0 and S1 calculated at 

the (TD-)B3LYP-D3(BJ)/6-311+G (d, p) level using PCM(solvent=methanol) model. Intra-molecular hydrogen bond distances are represented by dotted 

lines. Red: O; Withe: H; Blue: N; Gray: C. 
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Figure S3. Potential energy curve of HBO-pCH3 in the S0 as a function of dehedal angle DN1-C1-C2-C4 in methanol calculated at B3LYP-D3(BJ)/6-311+G 

(d, p) level using PCM(solvent=methanol) model.
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Figure S4. Optimized structures and relative energy(in kcal/mol) of enol and keto HBO-pCH3 as well as deprotonation forms in S0 and S1 calculated at 

the (TD-)B3LYP-D3(BJ)/6-311+G (d, p) level using PCM(solvent=methanol) model. Intra-molecular hydrogen bond distances are represented by dotted 

lines. Red: O; Withe: H; Blue: N; Gray: C. 
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* Minima of the corresponding first singlet excited states.

Figure S5. View of the frontier molecular orbitals (HOMO and LUMO) of HBO-pCH3 under different condition calculated at (TD-)B3LYP-D3(BJ)/6-

311+G (d, p) level using PCM(solvent=methanol) model. 
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Figure S6. (A)Normalized emission spectra (λex=330 nm), (B) excitation spectra of HBO-pCH3 in different solvents at ~375 nm, and (C) excitation 

spectra of HBO-pCH3 in different solvents at ~495 nm. Condition: The concentration of HBO-pCH3 was ~40 μmol/L in solvents.



Table S1. Calculated emission wavelengths (λem (nm)/oscillator strengths(f) of TICTs (shown in Figure 9) at TD-B3LYP/6-311G(d,p) using PCM(solvent=methanol) 

model .

structure TICT-1 TICT-2 TICT-3 TICT-4
state λem (nm)/f λem (nm)/f λem (nm)/f λem (nm)/f

S1 2036.8/0 2036.1/0 1424.9/0.0001 1426.3/0.0001

S2 649.5/0.0112 649.5/0.0112 540.1/0.1003 540.3/0.1004

S3 439.8/0 439.8/0 401.2/0.0002 401.3/0.0002
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Figure S7. (A) Absorption spectra and (B) Emission spectra in water/ ethanol mixtures with different water fraction( fw). (C) Emission intensities at 

380, 456, and 495 nm as functions of fw. Conditions: Concentration of HBO-pCH3 was ~40 μmol/L, excitation was at 330 nm.
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Figure S8. (A) Absorption spectra and (B) local enlargement of A); (C) emission spectra of HBO-pCH3 in water/ acetonitrile mixtures with different 

water fraction (fw); (D) emissions at 360, 458, and 496 nm as functions of fw. Conditions: Concentration of HBO-pCH3 was ~40 μmol/L, excitation 

was at 330 nm.




