Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information

Electric field induced switching of anomalous Nernst conductivity in 2D

MoTe₂/VSe₂ heterostructure

Brahim Marfoua and Jisang Hong*

Department of Physics, Pukyong National University, Busan 48513, Korea

Corresponding Authors

*E-mail: hongj@pknu.ac.kr

Fig. S1 (a) calculated phonon dispersion of the $MoTe_2/VSe_2$ heterostructure. (b) Top and side views snapshot of the molecular dynamics simulations of the $MoTe_2/VSe_2$ heterostructure at 300 K up 5 ps.

Fig. S2 Electric field dependent SOC band structure of the MoTe₂/VSe₂ heterostructure at (a) E = -0.2 V/Å, (b) E = 0.2 V/Å, (c) E = -0.4 V/Å and (d) E = 0.4 V/Å. Here, the green line represents the contribution from the VSe₂ layer while the blue line represents the majority spin component and the red line is the minority spin component from the MoTe₂ layer.

Fig. S3 Layer dependent density of states (DOS) of $MoTe_2/VSe_2$ heterostructure at (a) E = 0 V/Å, (b) E = -0.6 V/Å, and (c) E = 0.6 V/Å.

Fig. S4 Electric field dependent anomalous Hall conductivity (σ_{xy}) as a function of chemical potential (μ) at (a) E = -0.2 V/Å, (b) E = 0.2 V/Å, (c) E = -0.4 V/Å and (d) E = 0.4 V/Å.

Fig. S5 Layer dependent projected SOC band structure of $MoTe_2/VSe_2$ heterostructure at (a) E = 0 V/Å, (b) E = -0.6 V/Å, and (c) E = 0.6 V/Å. Here, the blue line represents the majority spin component and the red line is the minority spin component.

Fig. S6 Electric field dependent anomalous Nernst conductivity (α_{xy}) as a function of chemical potential (μ) at (a) E = -0.2 V/Å, (b) E = 0.2 V/Å, (c) E = -0.4 V/Å and (d) E = 0.4 V/Å.