Supplementary Information

Strategy of Enhancing Ionic Conductivity of Li₇La₃Zr₂O₁₂ with Accurate Sintering Conditions

Minjea Kim^a, Hyun Gyu Park^a and Kwangjin Park^a*

^aDepartment of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeonggu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea

*Corresponding authors

E-mail: Kwangjin Park^a (ydmj79@gachon.ac.kr)

Figure S1. (a) LiNO₃, La(NO₃)₃·6H₂O in 1-propanol, (b) $Zr(OH_7C_3)_4$ + acetic acid in 1-propanol, (c) LLZO solution, (d) LLZO gel, (e) dried LLZO gel, calcinated at 450 °C for 4 h in air atmosphere (f) LLZO with excess acetic acid, and (g) LLZO powder

Figure S2. Schematics of HRFTP4.

Figure S3. (a) Tetragonal LLZO phase, (b) cubic LLZO phase, Li arrangement of (c) tetragonal LLZO phase, and (d) cubic LLZO phase.³

Figure S4. LLZO pellet distortion according to thickness changes after the sintering process.

Figure S5. EIS and schematic of Jig for EIS analysis.

Figure S6. (a) LLZO pellet after sintering at 1,100 °C, and (b) LLZO pellet after sintering at 1,200 °C.

Figure S7. (a) XRD analysis and Rietveld refinement of HRFTP2 LLZO and (b) magnified XRD analysis of HRFTP2 LLZO.