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I. SPM expressions for ZFS parameters 
 

The general explicit SPM/ZFSP expressions given below are suitable for Gd3+ (S = 7/2) ion coordinated by n-

ligands in the metal-ligand MLn complex exhibiting tetragonal site symmetry. For Gd3+:PbTiO3 the coordination 

number n = 6 for Ti site and 12 for Pb site. In Eqs. (S1) – (S3) the symbols have the following meaning: (Ri, qi, ji) 

are the polar coordinates of the i-th ligand, the intrinsic parameters  represent the strength of the kth-rank 

ZFS contributions from a given ligand type located at the distance Ri, R0 is the reference distance, which in practice 

is arbitrarily fixed as the average M-L distance Ravg for a particular MLn complex, tk are the power-law exponents.1,2,3 
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II. Atomic multiplicity, equivalence, and nonequivalence of the unit cell and supercells 

 

The unit cell of the pure PbTiO3 compound constitutes of one Pb, one Ti, and three O atoms, where only two 

of the three oxygen atoms are non-equivalent. The multiplicity of the first kind of oxygen (O1) is one, while the 

multiplicity of the second kind of oxygen atom (O2) is two. This implies that there are one O1 and two equivalent 

O2 atoms in the unit cell. The unit cell contains 5(= 1 + 1 + 3)	atoms, including 4(= 1 + 1 + 2) non-equivalent 

atoms. In summary, in the unit cell, there are five atoms, i.e., 1×Pb, 1×Ti, 2×O1, 1×O2, and four non-equivalent 

atoms, i.e., Pb, Ti, O1, O2, viz., (5)!"#$% = (1)&' + (1)() + (2 + 1)*		and (4)+#+,-./)0!1-+"	!"#$% = (1)&' +

(1)() + (1 + 1)*. The 2 × 2 × 2 supercell contains 8 Pb including 6 non-equivalent Pb atoms, 8 Ti including 2 

non-equivalent Ti atoms, and 24 O including 6 non-equivalent O atoms. The multiplicity factor is 2 for 2 of the 6 

Pb atoms, while this factor is 1 for the remaining 4 Pb atoms, viz., 8(= 2 × 2 + 1 × 4). The multiplicity factor is 4 

for both of the Ti atoms, viz., 8(= 4 × 2). The multiplicity factor is 4 for the 6 O atoms, viz., 24(= 4 × 6). In 

summary, the supercell contains 40(= 8 + 8 + 24) atoms, including 14(= 6 + 2 + 6) non-equivalent atoms. In 

summary, in the supercell there are forty atoms, i.e., 1×Pb1, 2×Pb2, 1×Pb3, 1×Pb4, 2×Pb5, 1×Pb6, 4×Ti1, 4×Ti2, 

4×O1, 4×O2, 4×O3, 4×O4, 4×O5, 4×O6, and fourteen non-equivalent atoms, i.e., Pb1, Pb2, Pb3, Pb4, Pb5, Pb6, 

Ti1, Ti2, O1, O2, O3, O4, O5, O6, viz., (40)!"#$% = (1 + 2 + 1 + 1 + 2 + 1)&' + (4 + 4)() + (4 + 4 + 4 + 4 +

4 + 4)* and (14)+#+,-./)0!1-+"	!"#$% = (1 + 1 + 1 + 1 + 1 + 1)&' + (1 + 1)() + (1 + 1 + 1 + 1 + 1 + 1)*. 

The same supercell, as discussed above, is used to substitute Gd atom at Pb-site. However, to construct 

PbTi0.0875Gd0.125O3, we have used another 2 × 2 × 2 supercell. This new supercell contains 8 Pb, including 2 non-

equivalent Pb atoms, 1 Gd atom, 7 Ti, including 5 non-equivalent Ti atoms, and 24 O, including 10 non-equivalent 
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O atoms. The multiplicity factor is 4 for both of the Pb atoms, viz., 8(= 4 × 2). The multiplicity factors are 1, 2, 

and 4, for 4, 2, and 4 for 4 of the 10 O atoms, viz., 24(= 1 × 4 + 2 × 2 + 	4 × 4). In summary, the supercell 

contains 40(= 8 + 1 + 7 + 24) atoms, including 18(= 2 + 1 + 5 + 10) non-equivalent atoms. Moreover, for 

PbTi0.875Gd0.125O3-δ the similar 2 × 2 × 2 supercell with one less O atom is used, viz., 23 O including 9 non-

equivalent O atoms. 

In order to investigate the O vacancy defect in Pb0.875Gd0.125TiO3- δ, we have used a  2 × 2 × 2 supercell, 

containing 7 Pb including 5 non-equivalent Pb atoms, 1 Gd atoms, 8 Ti, including 6 non-equivalent Ti atoms, and 

23 O, including 13 non-equivalent O atoms. The multiplicity factor is 2 for 2 of the Pb atoms and 1 for the 3 

remaining Pb atoms, viz., 7(= 2 × 2+1× 3). For 2 of Ti atoms the multiplicity factor is 2 and 1 for the others, viz., 

8(= 2 × 2+1× 4). As well, the multiplicity factor of 10 O atoms is 2 and the 3 others O is 1, viz., 23(=

2 × 10+1× 3). 

 

III. Computational Details  

 
III.1. Temperature-dependent DFT computations 
 

The two procedures that allow to include higher temperatures in DFT computations are as follows.  

(1) One procedure is to multiply the density of states (DOS) by the Fermi-Dirac distribution. Here we assume 

that the temperature is not so high to change the shape of the ground state band structure and only the arrangements 

of electrons are changed by the increasing temperature according to the Pauli exclusion principle. It is worth 

mentioning that although in this procedure ion dynamics is ignored before performing DFT computations, 

temperature dependence can be still included after obtaining electronic band structures at zero temperature. In order 

to elucidate the latter point, we discuss the effects of multiplying the DOS, i.e., 𝑔(𝜀), by the Fermi-Dirac distribution 

function, 𝑓(𝜀). At zero temperature (𝑇 = 0), where the chemical potential 𝜇 approaches to the Fermi energy 𝜀3, as 

expressed in Eq. (2.53) of Ref.4, 𝑓(𝜀) becomes a step function, as written in Eq. (2.52) of Ref. 4, that is unity before 

𝜀3 and zero after 𝜀3. Therefore, at 𝑇 = 0, this step function implies that all the valence states under the Fermi energy 

are occupied, while all the conduction states above the Fermi level remain unoccupied, as shown in Fig. 2.3(a) of 

Ref.4 However, at 𝑇 ≠ 0, 𝑓(𝜀), as expressed in Eq. (2.56) of Ref. 4, deviates from the step function so that some of 

the electrons are allowed to move from the valence states towards the conduction states depending on how much 

the temperature has increased from zero, as shown in Fig. 2.3(b) of Ref. 4 Therefore, multiplying the 𝑔(𝜀) by 𝑓(𝜀) 

at 𝑇 ≠ 0 allows to consider temperature dependence of the physical quantities. For example, at 𝑇 ≠ 0 the energy 

density, 𝑢 = 𝑈/𝑉, and electron density, 𝑛 = 𝑁/𝑉, can be obtained as 𝑢 = ∫ 𝜀𝑔(𝜀)𝑓(𝜀)𝑑𝜀4
,4  and 𝑛 =

∫ 𝑔(𝜀)𝑓(𝜀)𝑑𝜀4
,4 , as expressed in Eqs. (2.66) and (2.67) of Ref. 4, respectively. In the integrands of the latter 

integrals, 𝑔(𝜀) is multiplied by 𝑓(𝜀) to consider the effects of temperature on the energy and electron densities, 
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respectively. For the other physical quantities, depending on how they are related to total energy, the derivatives of 

the Fermi-Dirac distribution functions may appear in the integrands, see e.g., electronic specific heat capacity 

expressed in Eq. (28) on page 152 of Ref.5 as 𝐶56 =
78
79
= ∫ 𝑑𝜀(𝜀 − 𝜀3)

7:(<)
79

𝑔(𝜀)4
> . In the latter integral, 

temperature dependency of 𝐶56 is considered within the temperature derivative of the 𝑓(𝜀). We have recently also 

used the same strategy to study the thermoelectric properties of cerium-based compounds, where the temperature 

dependences of Seebeck coefficient and electrical conductivity have been used within the energy derivative of 𝑓(𝜀), 

as expressed in Eqs. (3) and (4) of Ref. 6, respectively, as well as the electronic part of the thermal conductivity 

expressed in Eq. (3) Ref. 7. The above discussion confirms that using the procedure (1) ion dynamics is not directly 

included before performing the electronic structure computations. Therefore, it represents a purely electronic 

approach where phonon vibrations have been neglected.  

In this purely electronic approach, the band structure is obtained at zero temperature in the absence of ion 

dynamics and then the effects of a nonzero temperature are considered using the Fermi-Dirac distribution function 

at a specific temperature. By this way, the electronic part of the temperature dependence of a physical quantity can 

be estimated for a given crystal. In order to consider the phononic part of the temperature dependence of a physical 

quantity, ion dynamics would be also included. In this work, we have included neither electronic nor ionic 

temperature dependence in DFT computations. Hence, our ground state results are obtained at zero temperature. 

(2) Using temperature dependent density functional theory where temperature can be considered by going 

beyond the standard Kohn-Sham DFT formalism via time dependent DFT (TDDFT). The TDDFT, as an extension 

of the standard Kohn-Sham DFT, is a quantum mechanical theory utilized to study the dynamics of the many-body 

systems in question involving time-dependent potentials. Here, we have used time or temperature independent DFT. 

Note that we have used the cif files measured at nonzero temperatures. Hence, in fact, we have calculated the ground 

state electronic structures of the systems observed at nonzero temperatures. Ground state here again implies that the 

electronic structures are calculated by DFT at zero temperature. For considering higher temperature, we would 

redistribute the electrons following the Pauli exclusion principle and find the excited states of system where some 

valence electrons can move to the conduction region. Here, we have not done it and so our results are related to the 

ground state of the system. Note that the temperature is considered, albeit indirectly, via the structures measured at 

nonzero temperature without applying Fermi-Dirac distribution function or employing time/high-temperature 

dependent DFT. 

 
III.2. Methods utilized for optimization of structures, structural properties, and electronic structures 
 

For the optimization of structures, and computation of structural properties, we use the semilocal PBE-GGA 

functional.11 Structural properties, such as lattice constants, bulk moduli, and elastic constants, can be usually well 

predicted consistent with experiment more quickly by the local and semilocal functionals, such as LDA and PBE-

GGA, than the other more sophisticated and time-consuming functionals, such as hybrid, LDA+U, GW, with more 
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expensive costs of calculations. 12 However, it is well-known that the (LDA) and PBE-GGA cannot always 

satisfactorily predict the electronic structures of the strongly correlated systems due to its weakness in predicting 

the degree of 4f electrons localization. 8,9 This shortcoming of LDA and PBE-GGA originates from the dual nature 

of the 4f and/or 5f electrons.10 The nature of the 4f electrons varies between two extreme limits, i.e., itinerant and 

localized behaviors.6 Therefore, to go beyond the PBE-GGA functional including onsite-exact-exchange, i.e., 

Hartree-Fock (HF), we use the hybrid functional11 to consider the strong electronic correlations of the 4f electrons 

in Gd3+ ions. Generally, hybrid functional can be written as: 𝐸?@
ℎABCD7 = 𝐸?@EF + 𝛼(𝐸?G3 − 𝐸?EF), where some parts of 

the exchange term in the semilocal functional is replaced by the HF exchange. In this expression, α is a 

dimensionless mixing parameter describing the fraction of the HF exchange. The  and  are the exchange-

correlation and exchange functionals, respectively. Nominally, α can vary between: 0 and 1, viz. 0 ≤ 𝛼 ≤ 1. For 

𝛼 = 0, the hybrid functional 𝐸?@
ℎABCD7reduces to the semilocal functional 𝐸?HEF, viz. 𝐸?@

ℎABCD7 = 𝐸?HEF +

0 × (𝐸?G3 − 𝐸?EF) = 𝐸?HEF. Thus, the lower limit, 𝛼 = 0, refers to the PBE-GGA functional with lower degree of 4f-

localization. For 𝛼 = 1, the hybrid functional 𝐸?@
ℎABCD7simplifies to the onsite-exact-exchange functional 𝐸?G3, viz. 

𝐸?@
ℎABCD7 = 𝐸?HEF + 1 × (𝐸?G3 − 𝐸?EF) = 𝐸?HEF + 𝐸?G3 − 𝐸?EF = 𝐸?G3. Thus, the upper limit, 𝛼 = 1, represents the HF 

exchange functional with higher degree of 4f-localization. In practice, the 𝛼 parameter can be fine-tuned by 

matching to experimental data, if available. For the pure compound, the semilocal PBE-GGA functional yields 

appropriate results. This implies that for the pure compound, it is not essential to include more correlations, since 

there are no 4f correlated electrons. 

In this work, the correlated orbital is the localized 4f orbital of Gd ion which exists only after doping Gd. To 

increase the accuracy of the calculations, we use the hybrid functional only for the electronic properties of the doped 

compounds containing Gd3+ ions. The reason is that the computed structural properties are less sensitive to the 

correlation effects than the computed electronic properties. This finding is corroborated by comparing Table 1 and 

Table 2 of Ref.12 reporting the lattice parameters and Bulk moduli (i.e., structural properties), and the magnetic 

moments (i.e., electronic structures), respectively, for CeIn3 heavy fermion system. This comparison shows that the 

lattice parameters and Bulk moduli computed by semilocal functional agree well with experimental values, whereas 

much worse agreement is observed for the magnetic moments computed by semilocal functional and experimental 

values. By including hybrid functional over semilocal functional, the electronic properties that are highly sensitive 

to the correlation effects may be perceptibly improved, whereas no such gain can be obtain for structural properties, 

see Tables 1 and 2 of Ref. 12 

Therefore, for the doped compounds, we use the hybrid (PBE-GGA) functional as the semilocal exchange-

correlation functional to calculate their electronic (structural) properties that are highly (slightly) sensitive to the 

correlation effects. However, due to the lack of experimental data for the doped compounds, it is impossible to 

adjust the mixing parameter α by matching the computed and experimental data. Nevertheless, in practice, the 

xcE xE
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variation range of this parameter is smaller than that nominally expected (0, 1). According to the available 

experiences, the values of α ranging from 0.2 to 0.3 usually yields appropriate results, see Table 1 and Fig. 1 of Ref. 

12 Note that the default value of 𝛼 = 0.25, optimized by taking a variety of strongly correlated compounds into 

account, is adopted in the WIEN2k code; for details, see, in Ref. 13 Section 4.5.8 “Onsite-exact-exchange and hybrid 

functionals for correlated electrons”, formula expressed on page 50, and the corresponding value of 𝛼 parameter 

given in the last line of the “case.ineece” file on page  51, where the extension “ineece” stands for input (IN) for the 

exact exchange for correlated electrons  (EECE). 14 Importantly, e.g. Bjaalie et al. 15 obtained satisfactory results 

using 𝛼 = 0.25 for GdTiO3 crystal, which is structurally similar to Gd3+:PbTiO3 studied by us. Hence, we also adopt 

of 𝛼 = 0.25 for the hybrid calculations. 

 

III.3. Relativistic interactions included in the DFT computations and its effects on the physical results 

 

The relativistic corrections can affect the DFT band structures and thus physical properties, when the velocity 

of electron approaches to that of light. Taking the relativistic interaction into account makes the ab initio calculations 

more cumbersome and computationally expensive. The relativistic effects depend on the atomic numbers of the 

atoms that make up the compounds as well as the crystalline environment of the material.  In free atoms, the 

relativistic effects can become more crucial for heavy atoms having high atomic numbers.16 In compounds 

containing heavy atoms, in addition to the atomic numbers, the relativistic effects can also depend on the interactions 

occurring within the crystals, as determined by the electronic structures of the materials. For instance, we have 

previously concluded that the relativistic effects may not be so significant for Pb/Si(111) thin-films, despite 

containing heavy Pb atom.17 However, we would not generalize the latter conclusion to the cases in question due to 

the following reasons: (1) in addition to the Pb atom, the doped cases contain heavy Gd atoms with large atomic 

number 64, (2) the crystalline environments of the pure and doped compounds differ from that of Pb/Si(111) thin-

films, and (3) in principle, including the relativistic effect can generally provide more accurate results than in the 

case they are excluded. Therefore, despite making the calculations more time-consuming, we have considered the 

relativistic effects for the pure compound, including the heavy Pb atom, and the doped compositions, including both 

the Pb and Gd atoms. In one of the initialization steps using the WIEN2k code, before performing self-consistent 

field (SCF) calculations, we separate the electrons into core and valence electrons by giving a separation energy of 

-9.0 Ry. In this step, the core electrons are solved by LSTRART program, which is a modified multiconfiguration 

relativistic Dirac-Fock program.18 For the valence electrons, the fully relativistic Dirac equation, as expressed in 

Eq. (1) of Ref. X =[http://wien2k.at/reg_user/textbooks/novak_lecture_on_spinorbit.pdf}], is simplified to Eq. (10) 

in Ref. X. Using central filed approximation, i.e., assuming spherical symmetry, the above simplified Dirac equation 

is further reduced to Eq. (11) in Ref. X, which includes five terms. In so-reduced equation, the first and second 

terms are the common nonrelativistic Schrödinger equation, the third term is the mass correction, the fourth term is 
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the Darwin correction, and the fifth term represents the spin-orbit coupling (SOC). In this work, the SOC is added 

to include the relativistic effects using the second variational method.19  

 

III.4. Procedure used for determination of stoichiometry of the doped compositions 
 

To consider the stoichiometry of the doped compositions in the absence and presence of the oxygen vacancy, 

we adopt the following three-step procedure (briefly outlined in Section 4.4 of the Main part). In the first step, we 

construct a 2 × 2 × 2 supercell so that the 1:1:3 stoichiometry of the pure compound remains unchanged. The 

2 × 2 × 2 supercell contains eight PbTiO3 formula units and is denoted Pb8Ti8O24. The stoichiometry of the pure 

Pb8Ti8O24 is 8:8:24. The latter stoichiometry of the pure compound inside the supercell can be simplified after 

dividing by 8 to DI
I
: I
I
: JK
I
F, which is identical to the stoichiometry (1: 1: 3) of the pure PbTiO3 inside the unit cell. 

This structural model ensures that the charges are still compensated in Pb8Ti8O24, viz., 8 × (+2𝑒) + 8 × (+4𝑒) +

24 × (−2𝑒) = 16𝑒 + 32𝑒 − 48𝑒 = 0.  

In the second step, we doped Gd at the Pb (Ti) site, leading to Pb7GdTi8O24 (Pb8Ti7GdO24) with the 

stoichiometry of 7: 1: 8: 24	(8: 7: 1: 24). The latter stoichiometry of the doped compound inside the supercell can 

be simplified, after dividing by 8, to L
I
: M
I
: I
I
: JK
I

 DI
I
: L
I
: M
I
: JK
I
F, which is identical to 0.875: 0.125: 1: 3 

(1: 0.875: 0.125: 3), corresponding to the doped compound Pb0.875Gd0.125TiO3 (PbTi0.875Gd0.125O3). In this model, 

the charges are not compensated in Pb0.875Gd0.125TiO3 (PbTi0.875Gd0.125O3) leading to extra +0.125𝑒 (−0.125𝑒) 

charges, viz., L
I
× (+2𝑒) + M

I
× (+3𝑒) + 1 × (+4𝑒) + 3 × (−2𝑒) = ML

I
𝑒 + 4𝑒 − 6𝑒 = ML

I
𝑒 + NJ

I
𝑒 − KI

I
𝑒 = M

I
𝑒 =

+0.125𝑒 D1 × (+2𝑒) + L
I
× (+4𝑒) + M

I
× (+3𝑒) + 3 × (−2𝑒) + 3 × (−2𝑒) = 2𝑒 + JI

I
𝑒 + N

I
𝑒 − 6𝑒 = MO

I
𝑒 +

JI
I
𝑒 + N

I
𝑒 − KI

I
𝑒 = − M

I
𝑒 = −0.125𝑒F	. This shows that the charges are not balanced for doped compositions in the 

absence of the oxygen vacancy. However, in our DFT/ab initio computations, the valences (electron charges) are 

determined so that in any case the system remains neutral and the charges are well balanced due to the hybridizations 

occurring among various orbitals of the atoms in both the doped compositions in the absence of the oxygen vacancy.  

In the third step, we introduce an oxygen vacancy (denoted customarily20 by an empty square symbol �) at the 

O site, which leads to Pb7GdTi8O23�1 (Pb8Ti7GdO23�1) with the stoichiometry of 7: 1: 8: 23: 1	(8: 7: 1: 23: 1). The 

latter stoichiometry of the doped compound in the presence of oxygen vacancy inside the supercell can be simplified 

after dividing by 8 to L
I
: M
I
: I
I
: JN
I
: M
I
	DI
I
: L
I
: M
I
: JN
I
: M
I
F, which is identical to 

0.875: 0.125: 1: 2.875: 1.125	(1: 0.875: 0.125:	2.875: 1.125), corresponding to the doped compound 

Pb0.875Gd0.125TiO2.875�0.125 (PbTi0.875Gd0.125O2.875�0.125). By the above assumption, the charges are not compensated 

in Pb0.875Gd0.125TiO2.875�0.125 (PbTi0.875Gd0.125O2.875�0.125) leading to extra +0.375𝑒 (+0.125e) charges, viz., 
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L
I
× (+2𝑒) + M

I
× (+3𝑒) + I

I
× (+4𝑒) + JN

I
× (−2𝑒) + M

I
× (0𝑒) = MK

I
𝑒 + N

I
𝑒 + NJ

I
𝑒 − KO

I
𝑒 = N

I
𝑒 = +0.375𝑒 DI

I
×

(+2𝑒) + L
I
× (+4𝑒) + M

I
× (+3𝑒) + JN

I
× (−2𝑒) + M

I
× (0𝑒) = MO

I
𝑒 + JI

I
𝑒 + N

I
𝑒 − KO

I
𝑒 = MO

I
𝑒 + JI

I
𝑒 + N

I
𝑒 −

KO
I
𝑒 = + M

I
𝑒 = +0.125𝑒F. For convenience, in the Main part the latter doped compound in the presence of the 

oxygen vacancy is represented as Pb0.875Gd0.125TiO3-d (PbTi0.875Gd0.125O3-d), i.e. with the symbol � replaced for short 

by the symbol d; here, 𝛿	 = 	0.125	 = M
I
. Using this notation, the stoichiometry of the latter doped compound in the 

presence of oxygen vacancy can be simplified as: L
I
: M
I
: I
I
: JN
I
	DI
I
: L
I
: M
I
: JN
I
F, i.e. 

0.875: 0.125: 1: 2.875	(1: 0.875: 0.125:	2.875) for Pb0.875Gd0.125TiO3-d (PbTi0.875Gd0.125O3-d), respectively. This 

leads to the same extra charges:+0.375𝑒 (+0.125𝑒), viz., L
I
× (+2𝑒) + M

I
× (+3𝑒) + 1 × (+4𝑒) + JN

I
× (−2𝑒) =

MK
I
𝑒 + N

I
𝑒 + NJ

I
𝑒 − KO

I
𝑒 = N

I
𝑒 = +0.375𝑒 D1 × (+2𝑒) + L

I
× (+4𝑒) + M

I
× (+3𝑒) + JN

I
× (−2𝑒) = MO

I
𝑒 + JI

I
𝑒 +

N
I
𝑒 − KO

I
𝑒 = MO

I
𝑒 + JI

I
𝑒 + N

I
𝑒 − KO

I
𝑒 = + M

I
𝑒 = +0.125𝑒F.  

 

Tables and Figures 

 

Table S1. The ligand bond lengths (in [Å]) and the angular positions (in [°]) of O2- ligands in the [Ti-O6]8- cluster 

for the Gd3+ center in PbTi0.875Gd0.125O3: (a) non-relaxed structure obtained from the cif file21 and (b) optimized 

relaxed structure after DFT optimization.  

 (a) Non-relaxed (b) Relaxed Ti1 site (b) Relaxed Ti2 site (b) Relaxed Gd site 
Ligand Ri0  θi    Ri0  θi    Ri0  θi    Ri0  θi    
O1 2.3719 0 0 2.4793 0 0 2.5229 0 0 2.3225 0 0 
O1 1.7628 180 0 1.7760 180 0 1.7653 180 0 2.1070 180 0 
O2 1.9698 81.47 0 1.9089 76.20 0 2.0007 78.81 0 2.1446 81.76 0 
O2 1.9698 81.47 90 2.0447 80.27 90 2.0007 78.81 90 2.1446 81.76 90 
O2 1.9698 81.47 180 1.9089 76.20 180 2.0007 78.81 180 2.1446 81.76 180 
O2 1.9698 81.47 270 2.0447 80.27 270 2.0007 78.81 270 2.1446 81.76 270 

 

Table S2. The ligand bond lengths (in [Å]) and the angular positions (in [°]) of O2- ligands in the [Pb-O12]22- cluster 

for the Gd3+ center in Pb0.875Gd0.125TiO3: (a) non-relaxed structure obtained from the cif file21 and (b) optimized 

relaxed structure after DFT optimization for the Pb substitution sites of type: (1) {Pb1, Pb5, Pb2, or Pb6} and type 

(2) {Pb3, Pb7, Pb4, or Pb8}. 

 (a) Non-relaxed Pb site (b) Relaxed Pb type (1) site (b) Relaxed Pb type (2) site (b) Relaxed Gd site  
Ligand Ri0  θi    Ri0  θi    Ri0  θi    Ri0  θi    
O1 2.7917 80.691 45 2.8213 80.538 45 3.0494 80.684 45 2.5990 76.856 45 
O1 2.7917 80.691 135 2.8213 80.538 135 3.0494 80.684 135 2.5991 76.856 135 
O1 2.7917 80.691 225 2.8213 80.538 225 3.0494 80.684 225 2.5991 76.856 225 
O1 2.7917 80.691 315 2.8213 80.538 319.87 3.0494 80.684 315 2.5991 76.856 315 

ij ij ij ij

ij ij ij ij
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O2 2.5388 129.89 0 2.4884 127.95 0 2.4677 127.45 0 2.4800 129.19 0 
O2 2.5388 129.89 90 2.4884 127.95 90 2.4677 127.45 90 2.4800 129.19 90 
O2 2.5388 129.89 180 2.5806 129.76 180 2.4677 127.45 180 2.4800 129.19 180 
O2 2.5388 129.89 270 2.5806 129.76 270 2.4677 127.45 270 2.4800 129.19 270 
O3 3.1929 37.60 0 3.1504 38.098 0 3.1948 38.245 0 3.2140 37.157 0 
O3 3.1929 37.60 90 3.1504 38.098 90 3.1948 38.245 90 3.2140 37.157 90 
O3 3.1929 37.60 180 3.2994 36.883 180 3.1948 38.245 180 3.2140 37.157 180 
O3 3.1929 37.60 270 3.2994 36.883 270 3.1948 38.245 270 3.2140 37.157 270 

 

Table S3. The ligand bond lengths (in [Å]) and the angular positions (in [°]) of O2- ligands in the [Ti-O6]8- cluster 

for the Gd3+ center in PbTiO3 at different temperatures and structural phases obtained from the cif file.21 RT – room 

temperature.  

Temp. 10 K (tetragonal phase) RT (tetragonal phase) 800 K (cubic phase) 
Ligand Ri0  θi    Ri0  θi    Ri0  θi    
O1 2.3762 0 0 2.2515 0 0 1.985 0 0 
O1 1.7628 180 0 1.8865 180 0 1.985 180 0 
O2 1.9703 80.362 0 2.0026 76.753 0 1.985 90 0 
O2 1.9703 80.362 90 2.0026 76.753 90 1.985 90 90 
O2 1.9703 80.362 180 2.0026 76.753 180 1.985 90 180 
O2 1.9703 80.362 270 2.0026 76.753 270 1.985 90 270 

 

ij ij ij
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Fig. S1. Structure of PbTi0.875Gd0.125O3 obtained using data in respective Tables: (a) non-relaxed structure (Table 

S1) and (b) optimized relaxed structure (Table S1).  

 

Table S4. The ligand bond lengths (in [Å]) and the angular positions (in [°]) of O2- ligands in the [Pb-O12]22- cluster 

for the Gd3+ center in PbTiO3 at different temperatures and structural phases obtained from the cif file. 21  

Temp. 10 K (tetragonal phase) RT (tetragonal phase) 800 K (cubic phase) 
Ligand Ri0  θi    Ri0  θi    Ri0  θi    
O1 2.7858 80.439 45 2.7738 83.653 45 2.807 90 45 
O1 2.7858 80.439 135 2.7738 83.653 135 2.807 90 135 
O1 2.7858 80.439 225 2.7738 83.653 225 2.807 90 225 
O1 2.7858 80.439 315 2.7738 83.653 315 2.807 90 315 
O2 2.5062 129.188 0 2.4511 127.318 0 2.807 135 0 
O2 2.5062 129.188 90 2.4511 127.318 90 2.807 135 90 
O2 2.5062 129.188 180 2.4511 127.318 180 2.807 135 180 
O2 2.5062 129.188 270 2.4511 127.318 270 2.807 135 270 
O3 3.2099 37.240 0 3.291 36.317 0 2.807 45 0 
O3 3.2099 37.240 90 3.291 36.317 90 2.807 45 90 
O3 3.2099 37.240 180 3.291 36.317 180 2.807 45 180 
O3 3.2099 37.240 270 3.291 36.317 270 2.807 45 270 

 

ij ij ij
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Fig. S2. Structure of Pb0.875Gd0.125TiO3 obtained using data in respective Tables: (a) non-relaxed structure (Table 

S2) and (b) optimized relaxed structure (Table S2).  

 

Table S5. The ligand bond lengths (in [Å]) and the angular positions (in [°]) of O2- ligands for the Gd3+ center for 

the optimized relaxed structure with an O1-vacancy (Ov1): (a) for Ti-site in PbTi0.875Gd0.125O3-δ and (b) for Pb-site 

in Pb0.875Gd0.125TiO3- δ. 

(a) Ti-site (b) Pb-site 
Ligand Ri0  θi    Ligand Ri0  θi    
O1 2.1158 180 0 O1 2.6576 76.745 47.53 
O2 2.2014 76.611 0 O1 2.6953 76.934 223.4 
O2 2.2014 76.611 90 O1 2.5609 76.920 315.0 
O2 2.2014 76.611 180 O2 2.4090 128.46 1.911 

ij ij
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O2 2.2014 76.611 270 O2 2.4672 125.96 92.42 
    O2 2.4672 125.96 177.6 
    O2 2.4091 128.46 268.1 
    O3 3.3530 34.529 1.558 
    O3 3.3598 36.844 91.91 
    O3 3.3598 36.844 178.1 
    O3 3.3530 34.529 268.4 

 

 

 
Fig. S3. Optimized relaxed structure of Pb0.875Gd0.125TiO3- δ obtained for models assuming the presence of O-

vacancy: (iii) Gd3+ at Ti-site (upper part) and (ii) Gd3+ at Pb-site (lower part).   
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