Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

## **Supporting Information**

## Multifunctional Chemical Linker in Buried Interface for Stable and Efficient Planar Perovskite Solar Cells

Quanming Geng<sup>a,b</sup>, Zong Xu<sup>a</sup>, Wenwu Song<sup>a</sup>, Yanqiang Hu<sup>a,b,\*</sup>, Guangping Sun<sup>a</sup>, Jin Wang<sup>a</sup>, Minmin Wang<sup>a</sup>, Tongming Sun<sup>a</sup>, Yanfeng Tang<sup>a,\*</sup>, Shufang Zhang<sup>b,\*</sup>

<sup>a</sup>College of Chemistry and Chemical Engineer, Nantong University, Nantong 226001, Jiangsu, China. <sup>b</sup>School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, Shandong, China.

This file includes Figure S1-S13 and Table S1:



Figure S1. Absorption spectrum of HMBS powder.



Figure S2. FTIR spectra of pure HMBS powder and HMBS-modified SnO<sub>2</sub> film.



Figure S3. AFM images of SnO<sub>2</sub> films (a) without and with (b) HMBS modification.



Figure S4. (a) Optical absorbance and (d) corresponding Tauc plots of SnO<sub>2</sub> films without or with HMBS modification.



Figure S5. Transmission spectrum of SnO<sub>2</sub> films without or with HMBS modification.



Figure S6. XRD spectra of perovskite films prepared without or with HMBS-modified SnO<sub>2</sub> substrates.



Figure S7. (a) Optical absorbance and (d) corresponding Tauc plots of perovskite films prepared without or with HMBS-modified SnO<sub>2</sub> substrates.



**Figure S8.** Liquid-state <sup>1</sup>H NMR spectra of pure HMBS and PbI<sub>2</sub>/HMBS dissolving in DMSO-*d*<sub>6</sub>, respectively.



Figure S9. Pb 4f XPS spectra of perovskite films stripped on bare SnO<sub>2</sub> and HMBS-modified SnO<sub>2</sub> substrate.



Figure S10. Nyquist plots of the controlled device and HMBS-modified device. The inset is the equivalent circuit.



Figure S11. EQE spectra of the controlled and HMBS-modified PSCs.



Figure S12. Statistical distribution of PCE of the controlled and HMBS-modified PSCs. The statistical data were collected from 16 cells for each case.



Figure S13. Champion *I-V* curve of 1 cm<sup>2</sup> sized HMBS-modified PSCs.

Table S1. The photovoltaic performance parameters of the optimal small size (0.09 cm<sup>2</sup>) devices based on different perovskite films.

| Sample     | Voc (V) | Jsc (mA cm <sup>-2</sup> ) | FF (%) | PCE   |
|------------|---------|----------------------------|--------|-------|
| 0.00 mg/mL | 1.12    | 24.52                      | 79.23  | 21.75 |
| 0.05 mg/mL | 1.15    | 24.53                      | 80.17  | 22.62 |
| 0.10 mg/mL | 1.16    | 24.56                      | 81.98  | 23.42 |
| 0.15 mg/mL | 1.14    | 24.47                      | 80.29  | 22.40 |