Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information

Possibility of regulating valley-contrasting physics and nontrivial topology by ferroelectricity in functionalized arsenene

Xiaohan Ren,^a Yaping Wang,^b Weixiao Ji,^a Miaojuan Ren,^a Peiji Wang,^a Shufeng Zhang,^a Shengshi Li^{a,*} and

Changwen Zhang^{a,*}

^a Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China

^b State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

Corresponding Author:

*E-mail: sdy_liss@ujn.edu.cn

*E-mail: ss_zhangchw@ujn.edu.cn

Fig. S1 (a) Evolution of the total energy for the monolayer A-AsCH₂OH obtained from the AIMD simulation at 237K. The inset is the final structure of the monolayer A-AsCH₂OH. (b) Calculated phonon spectrum of the monolayer A-AsCH₂OH.

Fig. S2 Calculated band structure based on HSE06 functional for monolayers A-AsCH₂OH (a) and A'-AsCH₂OH (b).

Fig. S3 Band structure of the monolayer A-AsCH2OH obtained from DFT calculation and TB fitting.

Fig. S4 Band structure of the monolayer A-AsCH $_2$ OH with 3% (a) and 4% (b) compressive strain.

Fig. S5 (a) Calculated SOC band structures of the monolayer AsCH₂OH with a 180° rotation. (b-c) The enlarged views of energy bands at K and K' valleys, respectively. The red and bule lines separately represent spin-up and spin-down states. (d) Calculated Berry curvatures in the Brillouin zone.

Fig. S6 Evolution of Wannier charge center and edge states for the monolayer AsCH₂OH with a 180° rotation.