Supporting Information – Point defects and their impact on electrochemical performance in $Na_{0.44}MnO_2$ for sodium-ion battery cathode application

Chung-Hyok Rim, Chol-Hun Jang, Kwang-Han Kim, Chol Ryu, Chol-Jun Yu*

Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea

bilding energy per atom. Values in parentnesis are experimental ones [1].								
Element	Pseudopotential	Configuration	Phase	E_{bind} (eV/atom)				
0	O.pbe-van_ak.UPF	$2s^22p^4$	gas	-5.0618 (-5.12)				
Li	Li.pbe-s-van_ak.UPF	$1s^2 2s^{0.95} 2p^{0.05}$	bcc	-1.9267				
Na	Na.pbe-sp-van_ak.UPF	$2s^2 2p^6 3s^1$	bcc	-1.3131				
Κ	K.pbe-sp-van.UPF	$3s^23p^64s^1$	bcc	-1.0667				
Rb	rb_pbe_v1.uspp.F.UPF	$4s^24p^65s^{0.5}$	bcc	-0.9869				
Mn	Mn.pbe-sp-van.UPF	$3s^23p^64s^23d^5$	fcc	-4.3100				

Table S1. Pseudopotential file name, valence electron configuration, phase, and binding energy per atom. Values in parenthesis are experimental ones [1].

^{*}Corresponding author: Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

Table S2. Crystal system, space group, and formation energy per O₂ of binary metal oxides, calculated by $E_{\text{form}}(M_aO_b) = [E_{\text{tot}}(M_aO_b) - aE_{\text{tot}}(M) - b/2E_{\text{tot}}(O_2)] \cdot 2/b$, where $E_{\text{tot}}(M)$ is the total energy of elementary metal per atom and $E_{\text{tot}}(O_2)$ is the total energy of isolated O₂ molecule. Experimental values are from Ref. [2].

			$E_{\text{form}} (\text{eV/O}_2)$		
Compound	Structure	Space group	Cal.	Exp.	
Superoxide		_			
LiO ₂	cubic	Fm3 m	-0.7190		
NaO ₂	cubic	Fm3 ¯ m	-3.2784	-2.6950	
	orthorhombic	Pnnm	-3.3774		
	cubic	PaĪ	-3.3808		
	hexagonal	R3m	-3.3541		
KO ₂		C12c1	-3.4561	-2.9508	
		F4mmm	-3.5229		
		I4mmm	-2.8962		
RbO ₂	cubic	I4mmm	-3.4507	-2.8866	
_		Fm3̄m	0.2057		
Peroxide					
Li_2O_2	hexagonal	$P6_3/mmc$	-5.4927	-6.5697	
Na_2O_2	hexagonal	P62m	-4.1395	-5.2916	
$K_2 \tilde{O}_2$		Cmca	-3.8183	-5.1176	
$R\bar{b}_2\bar{O}_2$		Immm	-3.5259	-4.8887	
Oxide					
Li ₂ O	cubic	$Fm\bar{3}m$	-10.3643	-12.3854	
_	hexagonal	R3mh	-10.4348		
Na ₂ O	cubic	Fm3 ¯ m	-6.4193	-8.5801	
$K_2 \overline{O}$	cubic	Fm3 ¯ m	-4.8546	-7.4884	
Rb ₂ O	cubic	Fm3̄m	-4.0629	-7.0224	
MnO	cubic	Fm3m	-7.2104	-7.9794	
MnO_2	tetragonal	I4m	-5.2900	-5.3859	
-	tetragonal	$P4_2/mnm$	-6.3663		
	orthorhombic	Pbnm	-6.1844		
	orthorhombic	Pnam	-6.1835		
Mn_2O_3	cubic	<i>I</i> 213	-7.1037	-6.6219	
	cubic	IA ₃	-7.0121		
	orthorhombic	Pbca	-7.0114		
Mn_3O_4	tetragonal	$I4_1/amd$	-7.5976	-7.1870	
5 -	orthorhombic	Pbcm	-6.9005		
	orthorhombic	Pmab	-6.9033		

Table S3. Crystal system with space group and formation energy of sodium oxides calculated using oxygen gas and sodium metal as two end materials, and corrected formation energy. $E_{\text{form}} = \frac{1}{a+b}E_{\text{tot}}(M_aO_b) - [xE_{\text{tot}}(M) - (1 - x)E_{\text{tot}}(O_2)/2]$, where x = a/(a + b). The correcting term E_{corr} is determined from E_{corr}^0 shown in Fig. S1 by using the relation $E_{\text{corr}} = E_{\text{corr}}^0(1 - x)/2$, and then, the corrected formation energy is obtained by $E_{\text{form}}^{\text{corr}} = E_{\text{form}} - E_{\text{corr}}$.

				IOIIII			
M_aO_b	phase	а	b	x = a/(a+b)	$E_{\rm form}~({\rm eV})$	$E_{\rm corr}~({\rm eV})$	$E_{\rm form}^{\rm corr}$ (eV)
0 ₂	gas	0	2	0.0	0.0000		0.0000
NaO ₃	orthorhombic (Imm2)	1	3	1/4	-0.6816		-0.6816
NaO ₂	cubic $(Fm\bar{3}m)$	1	2	1/3	-1.1270	-0.2025	-0.9245
-	orthorhombic (Pnnm)				-1.0928		-0.8904
	cubic (Pā3)				-1.1180		-0.9156
	hexagonal $(R\bar{3}m)$				-1.1258		-0.9233
Na_2O_2	hexagonal (P62m)	2	2	1/2	-1.0349	0.3057	-1.3406
Na_2O	cubic $(Fm\bar{3}m)$	2	1	2/3	-1.0699	0.2038	-1.2737
Na	cubic (bcc)	1	0	1.0	0.0000		0.0000

Table S4. Crystal system with space group, total energy, and formation energy of titanium oxides calculated using oxygen gas and titanium metal as two end materials. $E_{\text{form}} = \frac{1}{a+b}E_{\text{tot}}(M_aO_b) - [xE_{\text{tot}}(M) - (1-x)E_{\text{tot}}(O_2)/2]$, where x = a/(a + b).

$M_a O_b$	phase	а	b	x = a/(a+b)	$E_{\rm form}~({\rm eV})$
02	gas	0	2	0.0	0.0000
Mn_2O_7	monoclinic $(P2_1/c)$	2	7	0.2222	-0.6230
MnO_2	monoclinic $(C12/m1)$	1	2	0.3333	-1.7233
-	tetragonal (I4m)	1	2	0.3333	-1.5574
	tetragonal (P42mnm)	1	2	0.3333	-1.5571
	orthorhombic (Pbnm)	1	2	0.3333	-1.6732
Mn_5O_8	monoclinic $(C12/m1)$	5	8	0.3846	-1.9057
Mn_2O_3	orthorhombic (Pbca)	2	3	0.4000	-2.1311
2 0	cubic (IA_3)	2	3	0.4000	-2.1044
	cubic (<i>I</i> 213)	2	3	0.4000	-2.1041
Mn_3O_4	tetragonal (I41/amd)	3	4	0.4286	-2.1707
5 1	orthorhombic (Pbcm)	3	4	0.4286	-2.0429
	orthorhombic (Pmab)	3	4	0.4286	-2.0437
MnO	cubic $(Fm\bar{3}m)$	1	1	0.5000	-1.9087
Mn	cubic (<i>fcc</i>)	1	0	1.0	0.0000

Table S5. Space group, elementary formation energy per atom from bcc Na metal, fcc Mn metal and O_2 gas (E_f^{el}) , and formation reaction and energy (E_f^{bi}) from binary oxides for Na–Mn–O system.

			Binary oxides	
Compound	Space group	$E_f^{\rm el} ({\rm eV})$	Reaction	$E_f^{\rm bi} ({\rm eV})$
Na ₁₄ Mn ₂ O ₉	P3	-1.3679	$7Na_2O + 2MnO$	-0.1459
Na ₅ MnO ₄	$P2_1m$	-1.5158	$5/2Na_2O + 1/2Mn_2O_3$	-0.1806
$Na_4Mn_2O_5$	Fddd	-1.7528	$2Na_2O + Mn_2O_3$	-0.2005
$Na_2Mn_3O_7$	<i>P</i> 1	-1.8924	$2NaO_2 + 3MnO_2$	-0.3356
Na_2MnO_4	P63mc	-1.3423	$NaO_2 + NaMnO_2$	-0.5142
$NaMn_2O_4$	Pnam	-2.1028	$NaO_2 + 2MnO$	-0.4797
			$1/2Na_2O_2 + Mn_2O_3$	-0.2849
NaMnO ₂	C2m	-2.1365	$1/2Na_2O_2 + MnO$	-0.6086
			$1/2N_2O + 1/2Mn_2O_3$	-0.4033
NaMn ₇ O ₁₂	I2m	-2.2161		

Table S6. Oxygen chemical potential $\Delta \mu_0(T, p)$ as increasing temperature *T* from 300 K to 1500 K with the experimental data of entropy S° , enthalpy difference $H^\circ(T) - H^\circ(Tr)$, and $H^\circ(Tr) - H^\circ(0) = 0.0899$ eV available from Ref. [2], where the reference temperature is Tr = 298.15 K. Here, $\Delta \mu_0(T, p)$ is evaluated at the pressure values of $p = p_\circ = 1$ atm and p = 0.2 atm, respectively.

1	,	S°	$H^{\circ}(T) - H^{\circ}(Tr)$	TS°	$\Delta \mu_{\rm O} (7$, p₀)	$\frac{1}{2}k_{\rm B}T\ln(p/p_{\circ})$	$\Delta \mu_{\rm O} (T, p)$
(°C)	(K)	(J/mol·K)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(eV)	(eV)	(eV)
25	298.15	205.148	0.000	61.1649	-26.2424	-0.2718	-0.0207	-0.2925
26.85	300	205.330	0.054	61.5990	-26.4325	-0.2738	-0.0208	-0.2946
126.85	400	213.873	3.026	85.5492	-36.9216	-0.3824	-0.0277	-0.4102
226.85	500	220.695	6.085	110.3475	-47.7913	-0.4950	-0.0347	-0.5297
326.85	600	226.454	9.245	135.8724	-58.9737	-0.6108	-0.0416	-0.6524
426.85	700	231.470	12.500	162.0290	-70.4245	-0.7294	-0.0485	-0.7780
526.85	800	235.925	15.838	188.7400	-82.1110	-0.8505	-0.0555	-0.9059
626.85	900	239.937	19.244	215.9433	-94.0097	-0.9737	-0.0624	-1.0361
726.85	1000	243.585	22.707	243.5850	-106.0990	-1.0989	-0.0693	-1.1683
826.85	1100	246.930	26.217	271.6230	-118.3630	-1.2259	-0.0763	-1.3022
926.85	1200	250.019	29.768	300.0228	-130.7874	-1.3546	-0.0832	-1.4378
1026.85	1300	252.888	33.352	328.7544	-143.3612	-1.4849	-0.0901	-1.5750
1126.85	1400	255.568	36.968	357.7952	-156.0736	-1.6165	-0.0971	-1.7136
1226.85	1500	258.081	40.611	387.1215	-168.9153	-1.7495	-0.1040	-1.8536

Table S7. Oxygen chemical potential $\Delta \mu_0$ (*T*, *p*) as decreasing oxygen partial pressure *p* from 10⁹ atm to 10⁻⁹ atm at temperatures of *T* = 1100 K and 700 K.

p		$\frac{1}{2}k_{\rm B}T\ln(p/p_{\circ})$	$\Delta \mu_{\rm O} (T,$	<i>p</i>) (eV)
(Pa)	(atm)	(eV)	1100 K	700 K
10 ¹⁴	10^{9}	0.9822	-0.2438	0.2528
10^{11}	10^{6}	0.6548	-0.5711	-0.0746
10^{8}	10^{3}	0.3274	-0.8985	-0.4020
10^{5}	10^{0}	0.0000	-1.2259	-0.7294
10^{2}	10^{-3}	-0.3274	-1.5533	-1.0568
10^{-1}	10^{-6}	-0.6548	-1.8807	-1.3842
10-4	10^{-9}	-0.9822	-2.2081	-1.7116

Figure S1. The calculated formation enthalpy versus experimental formation enthalpy for alkali metal oxides and manganese oxides. For alkali metal oxides, systematic differences are found, giving the correction energy for oxide formation energy $E_{\text{oxd}}^{\text{cor}} = -0.61$, 1.22, and 2.43 eV per O₂ for superoxide, peroxide and oxide, respectively.

Figure S2. Convex hull plot of formation energies of the binary Na–O system. Red-colored dashed line is for the original formation energies, and black-colored solid line is for the formation energies corrected with $E_{\text{oxd}}^{\text{cor}}$.

Figure S3. Convex hull plot of formation energies of the binary Mn–O system.

Figure S4. Polyhedral view of $(1 \times 1 \times 2)$ supercell containing intrinsic point defects in Na₄Mn₉O₁₈.

Figure S5. Polyhedral view for Na ion migration in $(1 \times 1 \times 2)$ supercell containing intrinsic point defects, such as Mn_{Na}, Na_{Mn}, V_{Mn} and V_{Na} , in Na₄Mn₉O₁₈.

Figure S6. Polyhedral view for Na ion migration in $(1 \times 1 \times 2)$ supercell containing intrinsic point defects and defect complexes, such as V_0 , O_i , V_{MnO} and V_{MnO_2} , in Na₄Mn₉O₁₈.

References

- [1] M. W. Chase, Jr., *NIST-JANAF Themochemical Tables*, Fourth Edition (J. Phys. Chem. Ref. Data, Monograph 9, 1998) pp. 11951.
- [2] *CRC Handbook of Chemistry and Physics*, Internet Version, D. R. Lide Ed.; CRC Press: http://www.hbcpnetbase.com, Boca Raton, FL (2005).