Supplementary Material

Impact of solvent interactions on ¹H and ¹³C chemical shifts investigated using DFT and a reference dataset recorded in CDCl₃ and CCl₄

Thomas Stadelmann, Chantal Balmer, Sereina Riniker* and Marc-Olivier Ebert*

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland

* sriniker@ethz.ch; marc-olivier.ebert@org.chem.ethz.ch

Collection of Chemical Shifts from the Literature

Literature data from different sources (maximum ten per compound) were collected for comparison with our measured chemical shifts in CDCl₃ (Figure 1 in the main text). In the literature search, only data measured in CDCl₃ and published in the period between 1980 and 2022 were considered (mostly found via Reaxys). The shifts from the following references were used: 1^{1–6} 2^{2,3,6–8} 3^{3,6–14} 4^{15–20} 5^{3,6,7,21,22} 6²³ 7^{24–27} 8^{6,28–31} 9^{32–41} 10^{42,43} 11^{44–47} 12^{6,48–50} 13^{1,6,51–53} 14^{54–58} 15^{6,59–68} 16^{69–80} 17^{6,81–89} 18^{90–99} 19^{100–109} 20^{12,110–118} 21^{50,119} 22^{120–122} 23^{6,123–127} 24^{128–138} 25^{136,139,140} 26^{141–151} 27^{152–161} 28^{162–170} 29^{171–179} 30^{180–190} 31^{191–200} 32^{201–207} 33^{208–217} 34^{218–227} 35^{6,228–237}

Effect of Solute-Solvent Interactions in Experiment: Compounds 26 and 34

The sites of specific solvent-solute interactions were identified by comparison of the chemical shifts measured in CDCl₃ and CCl₄. For **26**, the ¹³C chemical shift of the carbonyl carbon, as well as the shift of the conjugated β -carbon (Figure S1, carbons 1 and 3), move towards higher field when changing the solvent from chloroform-d to tetrachloromethane, whereas the other carbons that are not affected by hydrogen bonding with the solvent, have nearly identical chemical shifts. The shifts of protons close to functional groups involved in hydrogen bonds with chloroform are also affected by the change in solvent (Figure S2, protons at carbon 2 and 6 of **26**, α to carbonyl group). A similar behavior is observed for the ¹³C shifts of **34** (Figure S3).

Figure S1: ¹³C spectra of **26** in chloroform-d (top) and tetrachloromethane (bottom) referenced to internal TMS. Dashed grey lines help to visualize chemical shift differences between the two solvents.

Figure S2: ¹*H spectra of* **26** *in chloroform-d* (top) *and tetrachloromethane* (bottom) *referenced to internal TMS. Dashed grey lines help to visualize the chemical shift differences between the two solvents.*

Figure S3: ¹³C spectra of **34** in chloroform-d (top) and tetrachloromethane (bottom) referenced to internal TMS. Dashed grey lines help to visualize the chemical shift differences between the two solvents. The largest change is observed for carbonyl carbon 1.

Additional Figures and Tables:

Comparison of experimental data

Table S1: Root-mean-square deviation (RMSD), mean absolute deviation (MAD), maximum absolute deviation (Max. AD) when comparing the ¹H and ¹³C chemical shifts measured under standardized conditions to values collected from multiple literature sources in CDCl₃. (a) methyl protons of **11**, (b) carbons of the pyrimidine ring next to amine of **20**.

	¹ H	¹³ C
RMSD [ppm]	0.05	0.26
MAD [ppm]	0.09	0.15
Max. AD [ppm]	0.40 ^a	3.00 ^b

Table S2: RMSD, MAD and max. AD when comparing the ¹H and ¹³C chemical shifts measured in CCl₄ and CDCl₃.

	¹ H	¹³ C
RMSD [ppm]	0.08	1.40
MAD [ppm]	0.07	0.85
Max. AD [ppm]	0.20	5.90

Figure S4: Overlay of ¹H (top) and ¹³C (bottom) spectra of TMS in CDCl₃ (red) and CCl₄ (black) recorded with the same FIELD value. The TMS signal in the CDCl₃ spectra was referenced to 0 ppm. The same SR value was set in the CCl₄ spectra.

Comparison of experimental data to vacuum calculations (PBE0 & PBEP86)

Figure S5: Regression of the calculated chemical shieldings (PBEP86, in vacuum) versus the experimental chemical shifts measured in CDCl₃. (Left): ¹H. (Right): ¹³C. The histograms show the deviations after conversion of the shieldings into chemical shifts using the parameters from the regression.

*Figure S6: Regression of the calculated chemical shieldings (PBEP86, in vacuum) versus the experimental chemical shifts measured in CCl*₄. (Left): ¹H. (Right): ¹³C. The histograms show the deviations after conversion of the shieldings into chemical shifts using the parameters from the regression.

Table S3: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBEO or PBEP86 from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBEO	CCl ₄	0.09	0.08	0.07	1.05	1.08	0.83
PBEP86	CCl ₄	0.09	0.08	0.07	0.98	0.99	0.73
PBEO	CDCl ₃	0.09	0.08	0.08	1.14	1.32	0.88
PBEP86	CDCl ₃	0.09	0.08	0.08	1.32	1.40	0.80

Table S4: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBEO or PBEP86 from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBEO	CCl ₄	0.32	0.34	0.23	5.10	5.04	2.56
PBEP86	CCl ₄	0.53	0.38	0.23	6.10	3.52	2.27
PBEO	CDCl ₃	0.43	0.31	0.26	5.17	4.65	2.82
PBEP86	CDCl ₃	0.64	0.36	0.28	7.00	5.22	2.40

Table S5: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in vacuum with PBEO or PBEP86 versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C			
		all	sp ²	sp ³	all	sp ²	sp ³	
PBE0	CCl ₄	31.476	31.176	31.371	185.47	187.75	185.79	
		-1.062	-1.024	-1.006	-1.033	-1.048	-1.047	
PBEP86	CCl ₄	31.374	31.067	31.285	186.51	187.56	185.41	
		-1.051	-1.011	-1.004	-1.031	-1.062	-1.023	
PBE0	CDCl ₃	31.508	31.316	31.368	185.14	182.17	185.67	
		-1.053	-1.030	-0.983	-1.021	-1.001	-1.032	
PBEP86	CDCl ₃	31.405	31.209	31.281	186.17	179.88	187.43	
		-1.042	-1.018	-0.980	-1.019	0.977	-1.047	

Table S6: Cf. Table 3 in the main text: RMSD (ppm) between ¹H and ¹³C shifts calculated in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3) using the calculated ¹H and ¹³C shieldings of TMS as reference. Values are given for the complete set (all), for sp² carbons and attached protons (sp²), and for sp³ carbons and attached protons (sp³).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBEO	CCl ₄	0.24	0.35	0.10	5.79	6.95	3.73
PBEP86	CCl ₄	0.19	0.26	0.10	6.46	7.63	4.52
PBEO	CDCl ₃	0.20	0.27	0.12	4.89	5.85	3.31
PBEP86	CDCl ₃	0.17	0.18	0.14	5.68	6.69	4.10

Table S7: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBEO or PBEP86 from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBEO	CCl ₄	0.19	0.25	0.08	5.29	8.62	3.45
PBEP86	CCl ₄	0.15	0.18	0.08	6.09	9.71	4.28
PBEO	CDCl ₃	0.17	0.18	0.10	4.49	7.26	3.06
PBEP86	CDCl ₃	0.14	0.12	0.12	5.30	8.35	3.89

Table S8: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBE0 or PBEP86 from the experimental values in CDCl₃ and CCl₄ (ppm). But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹Н			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBEO	CCl ₄	0.64	0.64	0.24	12.4	12.4	6.24
PBEP86	CCl ₄	0.57	0.47	0.29	11.4	11.4	7.31
PBEO	CDCl₃	0.57	0.57	0.31	9.41	9.41	5.98
PBEP86	CDCl ₃	0.73	0.44	0.36	11.2	11.2	6.80

Table S9: Cf. Table 3 in the main text: RMSD (ppm) between ¹H and ¹³C shifts calculated in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively.

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCl ₄	0.31/0.38	0.45/0.15	0.13/0.47	2.38/2.44	2.71/2.11	1.94/2.86
PBEP86	CCI_4	0.29/0.44	0.41/0.26	0.13/0.53	2.20/2.25	2.19/1.70	2.12/2.72
PBE0	$CDCl_3$	0.26/0.35	0.37/0.16	0.11/0.43	1.95/2.26	2.03/1.69	1.91/2.88
PBEP86	$CDCl_3$	0.23/0.42	0.32/0.26	0.11/0.49	2.12/2.32	2.06/1.83	2.06/2.70

Table S10: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBE0 or PBEP86 from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively.

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCI_4	0.25/0.32	0.44/0.12	0.32/0.68	1.89/1.97	2.12/1.61	1.58/2.53
PBEP86	CCI_4	0.23/0.40	0.39/0.23	0.11/0.52	1.78/1.75	1.78/1.28	1.75/2.33
PBE0	CDCl ₃	0.20/0.30	0.35/0.13	0.08/0.42	1.59/1.85	1.64/1.32	1.59/2.59
PBEP86	CDCl ₃	0.19/0.38	0.30/0.23	0.09/0.48	1.70/1.86	1.64/1.41	1.71/2.38

Table S11: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum with PBE0 or PBEP86 from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively.

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp³
PBE0	CCl ₄	0.75/0.76	0.75/0.46	0.32/0.68	7.54/6.40	7.54/6.40	4.85/5.99
PBEP86	CCI_4	0.62/1.04	0.62/0.62	0.33/0.75	6.75/7.50	5.60/4.84	4.95/5.70
PBE0	CDCl ₃	0.68/0.83	0.68/0.44	0.28/0.66	4.93/5.92	4.93/4.64	4.76/5.92
PBEP86	CDCl₃	0.60/1.11	0.60/0.60	0.30/0.73	7.76/8.53	5.76/4.99	4.47/5.24

Comparison of experimental data to shielding calculations using CPCM and geometries reoptimized

with the corresponding implicit solvent (PBE0 & PBEP86)

Table S12: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBEO or PBEP86 with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only the sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCl ₄	0.08	0.07	0.06	1.59	1.19	0.90
PBEP86	CCI ₄	0.07	0.08	0.05	1.22	0.83	0.82
PBE0	CDCl ₃	0.08	0.08	0.06	1.42	1.26	0.89
PBEP86	CDCl ₃	0.08	0.09	0.05	1.07	0.89	0.78

Table S13: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM from the experimental values in $CDCl_3$ and CCl_4 . Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBEO	CCl ₄	0.27	0.22	0.18	9.63	9.12	2.42
PBEP86	CCl ₄	0.42	0.29	0.18	5.46	5.30	2.52
PBEO	CDCl ₃	0.27	0.21	0.17	9.16	8.81	2.42
PBEP86	CDCI ₃	0.41	0.31	0.16	4.73	4.76	2.20

Table S14: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only the sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCl ₄	31.407	30.902	31.344	186.47	195.35	186.45
		-1.072	-1.006	-1.033	-1.052	-1.112	-1.065
PBEP86	CCI ₄	31.307	30.801	31.261	187.55	193.57	188.23
		-1.061	-0.995	-1.032	-1.051	-1.091	-1.082
PBE0	CDCl ₃	31.409	30.934	31.332	186.55	192.35	186.62
		-1.068	-1.006	-1.023	-1.048	-1.085	-1.058
PBEP86	CDCl ₃	31.310	30.842	31.250	187.67	191.03	188.41
		-1.057	-0.997	-1.022	-1.047	-1.069	-1.076

Table S15: Cf. Table 5 in the main text: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM and experimental values in $CDCl_3$ or CCl_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCl ₄	0.30	0.45	0.09	7.52	9.15	4.26
PBEP86	CCI_4	0.25	0.37	0.07	8.09	9.71	5.11
PBE0	CDCl ₃	0.25	0.42	0.08	7.18	8.69	4.14
PBEP86	CDCl ₃	0.23	0.34	0.07	7.81	9.35	4.97

Table S16: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM from the experimental values in $CDCI_3$ and CCI_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBEO	CCl ₄	0.23	0.33	0.07	6.58	10.9	3.94
PBEP86	CCl ₄	0.18	0.27	0.18	7.40	12.1	8.71
PBEO	CDCl₃	0.21	0.31	0.07	6.36	10.5	3.83
PBEP86	CDCl ₃	0.17	0.24	0.06	7.21	11.8	4.68

Table S17: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM from the experimental values in $CDCl_3$ and CCl_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCl ₄	0.63	0.63	0.23	19.5	19.5	6.68
PBEP86	CCl ₄	0.64	0.64	0.18	16.6	16.6	8.71
PBEO	CDCl ₃	0.61	0.61	0.21	18.7	13.6	6.64
PBEP86	CDCl ₃	0.63	0.63	0.14	15.6	9.48	7.75

Table S18: Cf. Table 5 in the main text: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp³
PBE0	CCI_4	0.40/0.46	0.58/0.19	0.18/0.59	3.89/3.65	4.79/3.91	2.07/3.31
PBEP86	CCI_4	0.38/0.53	0.54/0.30	0.19/0.64	3.48/3.28	4.11/3.32	2.30/3.18
PBE0	CDCl ₃	0.38/0.48	0.55/0.22	0.17/0.60	3.56/3.36	4.32/3.33	2.00/3.41
PBEP86	$CDCl_3$	0.36/0.54	0.51/0.33	0.17/0.65	3.20/3.02	3.74/2.80	2.20/3.24

Table S19: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCI_4	0.33/0.41	0.57/0.17	0.16/0.58	2.74/2.80	3.42/2.67	1.67/2.89
PBEP86	CCI_4	0.32/0.49	0.53/0.28	0.34/0.64	2.67/2.50	10.4/9.18	5.90/7.08
PBE0	$CDCl_3$	0.31/0.42	0.54/0.20	0.14/0.60	2.58/2.68	3.19/2.36	1.60/3.04
PBEP86	CDCl ₃	0.30/0.50	0.50/0.31	0.16/0.65	2.55/2.37	3.03/1.99	1.80/2.78

Table S20: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCl ₄	0.75/0.79	0.75/0.39	0.36/0.79	14.3/12.7	14.3/12.7	5.13/6.74
PBEP86	CCI ₄	0.81/0.82	0.81/0.58	0.34/0.82	10.4/9.18	10.4/9.18	5.90/7.08
PBE0	$CDCl_3$	0.75/0.76	0.75/0.37	0.34/0.76	13.6/11.8	13.6/11.8	5.08/6.86
PBEP86	$CDCl_3$	0.81/0.81	0.81/0.61	0.33/0.81	9.48/8.14	9.48/8.14	5.31/6.65

Comparison of experimental data to shielding calculations using CPCM and geometries optimized in

vacuum (PBE0 & PBEP86)

Table S21: RMSD (ppm) of the ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 using the structures optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . Values are given for the complete carbon set (all), for only the sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBEO	CCl ₄	0.09	0.08	0.08	1.87	1.73	1.09
PBEP86	CCl ₄	0.10	0.11	0.07	1.37	1.17	0.92
PBEO	CDCl ₃	0.10	0.10	0.08	1.73	1.77	1.14
PBEP86	CDCl ₃	0.10	0.12	0.07	1.27	1.22	0.92

Table S22: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBEO or PBEP86 using the structures optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBE0	CCl ₄	0.07	0.07	0.06	1.45	1.17	0.87
PBEP86	CCI ₄	0.07	0.08	0.05	1.11	0.84	0.74
PBE0	CDCl ₃	0.08	0.08	0.06	1.34	1.25	0.92
PBEP86	CDCl ₃	0.09	0.10	0.05	1.01	0.93	0.75

Table S23: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 using the structures optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCl ₄	0.32	0.34	0.23	8.30	7.99	2.58
PBEP86	CCl ₄	0.40	0.28	0.19	4.35	4.17	2.13
PBEO	CDCl ₃	0.25	0.21	0.20	7.72	7.57	2.86
PBEP86	CDCl ₃	0.38	0.30	0.19	4.18	3.46	2.11

Table S24: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBEO or PBEP86 using the structures optimized in vacuum versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCl ₄	31.417	30.948	31.350	186.27	193.20	186.41
		-1.071	-1.010	-1.031	-1.047	-1.093	-1.062
PBEP86	CCl ₄	31.317	30.853	31.267	187.37	191.54	188.19
		-1.061	-1.000	-1.030	-1.046	-1.074	-1.078
PBE0	CDCl ₃	31.419	30.984	31.338	186.35	190.28	186.057
		-1.020	-1.011	-1.021	-1.042	-1.068	-1.054
PBEP86	CDCl ₃	31.320	30.897	31.256	187.48	189.05	188.36
		-1.057	-1.002	-1.020	-1.042	-1.052	-1.072

Table S25: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCI_4	0.24	0.35	0.10	6.03	7.33	3.67
PBEP86	CCI_4	0.19	0.26	0.11	6.63	7.90	4.49
PBE0	CDCl ₃	0.20	0.27	0.13	5.06	6.13	3.26
PBEP86	$CDCl_3$	0.17	0.18	0.15	5.78	6.86	4.07

Table S26: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries optimized in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBEO	CCl ₄	0.19	0.25	0.08	5.42	8.98	3.39
PBEP86	CCl ₄	0.15	0.18	0.08	6.20	10.0	4.21
PBEO	CDCl₃	0.17	0.18	0.11	4.61	7.61	3.00
PBEP86	CDCl ₃	0.14	0.12	0.12	5.41	8.66	3.82

Table S27: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp³
PBEO	CCl ₄	0.63	0.63	0.28	14.0	14.0	6.18
PBEP86	CCl ₄	0.50	0.47	0.33	11.5	11.5	7.33
PBEO	CDCl ₃	0.56	0.56	0.35	10.0	10.0	5.92
PBEP86	CDCl ₃	0.66	0.43	0.40	11.3	11.3	6.82

Table S28: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCI_4	0.32/0.38	0.47/0.16	0.13/0.48	2.73/2.72	2.55/2.55	1.97/3.01
PBEP86	CCI_4	0.29/0.45	0.42/0.26	0.14/0.54	2.43/2.44	2.55/1.94	2.19/2.89
PBE0	CDCl ₃	0.26/0.35	0.38/0.16	0.11/0.44	2.10/2.36	2.29/1.75	1.92/3.02
PBEP86	$CDCl_3$	0.24/0.42	0.33/0.26	0.12/0.50	2.12/2.31	2.02/1.60	2.11/2.86

Table S29: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 (ppm). But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0	CCI_4	0.25/0.32	0.45/0.12	0.11/0.47	2.10/2.17	2.49/1.88	1.60/2.66
PBEP86	CCI_4	0.24/0.41	0.40/0.23	0.12/0.53	1.99/1.92	2.10/1.47	1.81/2.50
PBE0	$CDCl_3$	0.20/0.30	0.36/0.13	0.09/0.43	1.71/1.93	1.87/1.36	1.57/2.72
PBEP86	CDCl ₃	0.19/0.38	0.31/0.23	0.09/0.49	1.66/1.82	1.56/1.23	1.73/2.51

Table S30: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with PBE0 or PBEP86 with geometries optimized in vacuum from the experimental values in $CDCl_3$ and Ccl_4 (ppm). But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0	CCl ₄	0.76/0.73	0.76/0.45	0.32/0.73	9.27/7.97	9.27/7.97	4.99/6.29
PBEP86	CCI ₄	0.64/0.97	0.64/0.61	0.33/0.80	6.90/7.79	5.75/4.85	5.46/6.36
PBE0	$CDCl_3$	0.69/0.76	0.69/0.43	0.28/0.71	5.61/6.22	5.61/4.29	4.90/6.22
PBEP86	$CDCl_3$	0.60/1.04	0.60/0.59	0.30/0.78	7.91/8.82	5.91/5.00	4.68/5.60

Comparison of experimental data to vacuum calculations with PBE0/pcSseg-3 and PBEP86/cc-pVTZ

(cross-validation)

Table S31: RMSD (ppm) between ¹H and ¹³C shifts calculated in vacuum and experimental values in CDCl₃ or CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	¹Н			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.10	0.10	0.09	1.36	1.49	1.03
PBEP86/cc-pVTZ	CCl ₄	0.12	0.11	0.10	1.33	1.36	0.93
PBE0/pcSseg-3	CDCl ₃	0.11	0.10	0.09	1.47	1.66	1.08
PBEP86/cc-pVTZ	CDCl ₃	0.13	0.12	0.12	1.89	1.88	1.02

Table S32: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.08	0.08	0.07	1.05	1.09	0.83
PBEP86/cc-pVTZ	CCl ₄	0.09	0.09	0.08	1.00	1.02	0.74
PBE0/pcSseg-3	CDCl ₃	0.09	0.08	0.07	1.12	1.32	0.87
PBEP86/cc-pVTZ	CDCl ₃	0.10	0.09	0.09	1.41	1.44	0.84

Table S33: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.32	0.29	0.22	5.73	5.67	2.54
PBEP86/cc-pVTZ	CCl ₄	0.52	0.43	0.28	5.49	4.19	2.81
PBE0/pcSseg-3	CDCl ₃	0.43	0.32	0.24	5.35	4.82	2.80
PBEP86/cc-pVTZ	CDCl ₃	0.63	0.40	0.33	6.68	5.92	2.98

Table S34: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in vacuum versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	31.363	31.068	31.276	181.63	183.89	181.95
		-0.999	-0.993	-0.992	-0.999	-0.997	-0.996
PBEP86/cc-pVTZ	CCl ₄	31.545	31.239	31.434	189.70	187.98	190.72
		-1.042	-1.004	-0.984	-0.995	-0.983	-1.024
PBE0/pcSseg-3	CDCl ₃	31.396	31.210	31.274	181.29	178.10	181.83
		-1.062	-1.040	-1.001	-1.063	-1.041	-1.073
PBEP86/cc-pVTZ	CDCl ₃	31.577	31.379	31.429	189.37	182.66	190.60
		-1.034	-1.010	-0.960	-0.984	-0.939	-1.010

Table S35: RMSD (ppm) between ¹H and ¹³C shifts calculated in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.27	0.41	0.09	10.4	13.0	5.42
PBEP86/cc-pVTZ	CCl ₄	0.18	0.22	0.12	2.99	2.84	3.14
PBE0/pcSseg-3	CDCl ₃	0.23	0.32	0.11	9.46	11.8	4.99
PBEP86/cc-pVTZ	CDCl ₃	0.17	0.15	0.17	2.79	2.82	2.77

Table S36: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.21	0.29	0.07	9.43	16.5	5.08
PBEP86/cc-pVTZ	CCl ₄	0.14	0.15	0.09	2.72	3.27	2.96
PBE0/pcSseg-3	CDCl ₃	0.18	0.22	0.09	8.63	15.1	4.68
PBEP86/cc-pVTZ	CDCl ₃	0.13	0.10	0.13	2.50	3.21	2.57

Table S37: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.71	0.71	0.23	20.8	20.8	8.57
PBEP86/cc-pVTZ	CCl ₄	0.57	0.39	0.34	6.36	6.36	5.02
PBE0/pcSseg-3	CDCl ₃	0.66	0.66	0.27	17.0	17.0	8.06
PBEP86/cc-pVTZ	CDCl ₃	0.73	0.32	0.41	6.71	6.71	4.51

Table S38: RMSD (ppm) between ¹H and ¹³C shifts calculated in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	1H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.36/0.42	0.53/0.14	0.15/0.53	5.46/4.82	7.04/3.20	2.24/6.47
PBEP86/cc-pVTZ	CCI_4	0.24/0.39	0.34/0.23	0.12/0.47	2.41/1.36	2.60/1.41	1.99/1.14
PBE0/pcSseg-3	$CDCl_3$	0.30/0.39	0.44/0.17	0.12/0.49	4.74/4.51	6.10/2.19	2.12/6.48
PBEP86/cc-pVTZ	CDCl ₃	0.19/0.37	0.23/0.23	0.12/0.43	3.20/2.10	3.77/2.54	2.02/1.13

Table S39: MAD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.29/0.36	0.52/0.14	0.12/0.52	4.42/3.89	6.43/2.30	1.82/6.19
PBEP86/cc-pVTZ	CCI_4	0.19/0.35	0.32/0.20	0.10/0.46	2.06/1.02	2.29/1.03	1.71/0.94
PBE0/pcSseg-3	$CDCl_3$	0.23/0.34	0.43/0.14	0.09/0.48	3.95/3.62	5.73/1.72	1.72/6.25
PBEP86/cc-pVTZ	$CDCl_3$	0.16/0.33	0.23/0.20	0.10/0.41	2.50/1.40	2.99/1.68	1.74/0.94

Table S40: Max. AD (ppm) of ¹H and ¹³C shifts calculated in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively.

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.84/0.81	0.84/0.44	0.36/0.71	14.5/10.6	14.5/9.55	5.57/10.6
PBEP86/cc-pVTZ	CCI_4	0.52/0.95	0.52/0.63	0.31/0.72	7.36/5.19	5.53/3.86	3.97/2.53
PBE0/pcSseg-3	CDCl ₃	0.79/0.88	0.79/0.42	0.31/0.69	11.1/10.5	11.1/6.12	5.48/10.5
PBEP86/cc-pVTZ	$CDCl_3$	0.60/1.02	0.43/0.61	0.28/0.70	11.0/8.87	11.0/8.87	4.41/2.36

Comparison of experimental data to shielding calculations using CPCM and geometries reoptimized

with the corresponding implicit solvent with PBE0/pcSseg-3 and PBEP86/cc-pVTZ (cross-validation)

Table S41: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ or CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.09	0.08	0.07	2.12	1.92	1.11
PBEP86/cc-pVTZ	CCl ₄	0.11	0.11	0.07	1.44	1.20	0.98
PBE0/pcSseg-3	CDCl ₃	0.09	0.09	0.07	1.93	1.93	1.11
PBEP86/cc-pVTZ	CDCl ₃	0.11	0.13	0.07	1.29	1.23	0.95

Table S42: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only the sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.07	0.07	0.06	1.61	1.22	0.91
PBEP86/cc-pVTZ	CCl ₄	0.08	0.08	0.06	1.14	0.85	0.78
PBE0/pcSseg-3	CDCl ₃	0.07	0.08	0.06	1.46	1.26	0.90
PBEP86/cc-pVTZ	CDCl ₃	0.08	0.06	0.10	1.01	1.23	0.77

Table S43: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp^2 carbons (sp^2) and for only sp^3 carbons (sp^3).

DFT Method	Exp. Solvent	1H			¹³ C			
		all	sp ²	sp ³	all	sp ²	sp³	
PBE0/pcSseg-3	CCI ₄	0.26	0.19	0.17	10.4	9.86	2.48	
PBEP86/cc-pVTZ	CCI ₄	0.42	0.32	0.19	4.62	4.54	2.91	
PBE0/pcSseg-3	CDCl ₃	0.28	0.25	0.18	10.0	9.64	2.48	
PBEP86/cc-pVTZ	CDCl ₃	0.41	0.33	0.18	3.86	3.87	2.59	

Table S44: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only the sp² carbons (sp²) and for only sp³ carbons (sp³).

all sn ² sn ³ all sn ² sn ³	
PBE0/pcSseg-3 CCl ₄ 31.292 30.787 31.249 182.66 192.04 182.64	
-1.081 -1.015 -1.052 -1.095 -1.158 -1.109	
PBEP86/cc-pVTZ CCl ₄ 31.482 30.981 31.410 190.71 195.55 191.36	
-1.053 -0.986 -1.011 -1.014 -1.046 -1.042	
PBE0/pcSseg-3 CDCl ₃ 31.293 30.817 31.237 182.75 189.10 182.83	
-1.077 -1.015 -1.042 -1.091 -1.132 -1.103	
PBEP86/cc-pVTZ CDCl ₃ 31.486 31.023 31.399 190.81 192.92 191.52	
-1.049 -0.989 -1.000 -1.010 -1.023 -1.035	

Table S45: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.34	0.51	0.10	12.3	15.3	6.07
PBEP86/cc-pVTZ	CCI_4	0.22	0.32	0.08	4.22	4.53	3.63
PBE0/pcSseg-3	CDCl ₃	0.32	0.48	0.09	12.0	14.9	5.97
PBEP86/cc-pVTZ	CDCl ₃	0.20	0.29	0.08	3.91	4.12	3.47

Table S46: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.26	0.38	0.09	10.8	18.9	5.63
PBEP86/cc-pVTZ	CCl ₄	0.16	0.22	0.06	3.89	5.42	3.41
PBE0/pcSseg-3	CDCl₃	0.24	0.35	0.07	10.6	18.6	6.56
PBEP86/cc-pVTZ	CDCl ₃	0.15	0.20	0.07	3.65	5.01	3.27

Table S47: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.71	0.71	0.25	27.7	27.7	9.70
PBEP86/cc-pVTZ	CCl ₄	0.55	0.55	0.21	9.33	9.33	6.13
PBE0/pcSseg-3	CDCl ₃	0.72	0.72	0.23	26.8	26.8	9.27
PBEP86/cc-pVTZ	CDCl ₃	0.55	0.55	0.20	8.10	8.10	5.21

Table S48: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.46/0.51	0.65/0.20	0.21/0.65	7.12/5.96	9.18/5.29	2.49/6.89
PBEP86/cc-pVTZ	CCI_4	0.32/0.48	0.46/0.28	0.15/0.58	2.02/1.75	1.94/1.94	2.06/1.25
PBE0/pcSseg-3	CDCl ₃	0.43/0.52	0.63/0.23	0.20/0.65	6.88/5.75	8.84/4.74	2.40/6.98
PBEP86/cc-pVTZ	CDCl₃	0.30/0.49	0.43/0.31	0.14/0.59	1.89/1.44	1.74/1.51	2.00/1.16

Table S49: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.39/0.44	0.65/0.18	0.19/0.64	5.42/4.73	7.89/3.45	2.03/6.51
PBEP86/cc-pVTZ	CCI_4	0.26/0.44	0.45/0.26	0.13/0.57	1.71/1.27	1.69/1.34	1.71/1.02
PBE0/pcSseg-3	$CDCl_3$	0.37/0.46	0.62/0.21	0.18/0.65	5.32/4.62	7.76/3.17	1.96/6.63
PBEP86/cc-pVTZ	$CDCl_3$	0.24/0.46	0.42/0.28	0.12/0.58	1.59/1.08	1.52/1.06	1.65/0.97

Table S50: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries reoptimized using CPCM from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.86/0.83	0.86/0.37	0.40/0.83	21.0/15.5	21.0/15.5	5.84/11.3
PBEP86/cc-pVTZ	CCI_4	0.70/0.76	0.70/0.57	0.32/0.76	5.41/6.02	4.29/6.02	4.76/3.04
PBE0/pcSseg-3	CDCl ₃	0.86/0.83	0.86/0.36	0.38/0.83	20.2/14.6	20.2/14.6	5.77/11.4
PBEP86/cc-pVTZ	$CDCl_3$	0.70/0.75	0.70/0.63	0.30/0.75	5.28/4.76	4.14/4.76	4.23/2.67

Comparison of experimental data to shielding calculations using CPCM and geometries optimized in

vacuum with with PBE0/pcSseg-3 and PBEP86/cc-pVTZ (cross-validation)

Table S51: RMSD (ppm) of the ¹H and ¹³C shifts calculated in the corresponding implicit solvent using the structures optimized in vacuum from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only the sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
	-	all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.09	0.08	0.07	1.92	1.79	1.11
PBEP86/cc-pVTZ	CCl ₄	0.11	0.12	0.07	1.31	1.20	0.87
PBE0/pcSseg-3	CDCl ₃	0.09	0.10	0.07	1.79	1.83	1.16
PBEP86/cc-pVTZ	CDCl ₃	0.11	0.13	0.08	1.26	1.29	0.89

Table S52: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent using the structures optimized in vacuum from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCI ₄	0.07	0.07	0.06	1.47	1.19	0.90
PBEP86/cc-pVTZ	CCI ₄	0.08	0.08	0.06	1.03	0.88	0.71
PBE0/pcSseg-3	CDCl ₃	0.07	0.08	0.06	1.38	1.25	0.95
PBEP86/cc-pVTZ	CDCl ₃	0.09	0.10	0.06	0.98	0.98	0.73

Table S53: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent using the structures optimized in vacuum from the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.24	0.19	0.17	9.04	8.70	2.57
PBEP86/cc-pVTZ	CCl ₄	0.39	0.33	0.20	3.66	3.44	1.89
PBE0/pcSseg-3	CDCl ₃	0.26	0.23	0.17	8.56	8.37	2.84
PBEP86/cc-pVTZ	CDCl ₃	0.40	0.33	0.21	3.58	3.68	1.84

Table S54: Intercept (ppm) and slope of the linear regression of ¹H and ¹³C shifts calculated in the corresponding implicit solvent using the structures optimized in vacuum versus the experimental values in CDCl₃ and CCl₄. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	1H			¹³ C		
		all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	31.302	30.833	31.255	182.46	189.84	182.60
		-1.080	-1.050	-1.019	-1.090	-1.105	-1.139
PBEP86/cc-pVTZ	CCI ₄	31.491	31.033	31.417	190.53	193.56	191.32
		-1.052	-0.993	-1.010	-1.009	-1.029	-1.039
PBE0/pcSseg-3	CDCI ₃	31.303	30.867	31.243	182.55	186.99	182.78
		-1.076	-1.020	-1.040	-1.086	-1.114	-1.098
PBEP86/cc-pVTZ	CDCl ₃	31.496	31.079	31.405	190.62	190.97	191.47
		-1.048	-0.995	-0.999	-1.005	-1.006	-1.031

Table S55: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.34	0.51	0.10	12.0	14.9	6.10
PBEP86/cc-pVTZ	CCI_4	0.22	0.32	0.06	4.03	4.19	3.64
PBE0/pcSseg-3	CDCl ₃	0.32	0.48	0.09	11.7	14.5	6.01
PBEP86/cc-pVTZ	CDCl ₃	0.20	0.29	0.08	3.76	3.84	3.48

Table S56: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.26	0.38	0.08	10.7	18.5	5.69
PBEP86/cc-pVTZ	CCl ₄	0.16	0.22	0.06	3.77	5.09	3.46
PBE0/pcSseg-3	CDCl₃	0.24	0.35	0.08	10.51	18.2	5.61
PBEP86/cc-pVTZ	CDCl ₃	0.15	0.20	0.07	3.53	4.68	3.32

Table S57: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum from the experimental values in $CDCl_3$ and CCl_4 . But conversion to chemical shifts was done using Eq. (1) instead of Eq. (3). Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp. Solvent	¹ H			¹³ C		
		all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.72	0.72	0.27	26.2	26.2	9.53
PBEP86/cc-pVTZ	CCl ₄	0.55	0.55	0.20	7.89	7.89	5.47
PBE0/pcSseg-3	CDCl ₃	0.72	0.72	0.25	25.1	25.1	9.80
PBEP86/cc-pVTZ	CDCl ₃	0.54	0.54	0.24	7.46	7.46	5.19

Table S58: RMSD (ppm) between ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum and experimental values in CDCl₃ or CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹ H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp³
PBE0/pcSseg-3	CCl ₄	0.44/0.50	0.64/0.20	0.20/0.44	6.70/5.62	8.59/4.73	2.45/6.74
PBEP86/cc-pVTZ	CCI_4	0.31/0.47	0.45/0.28	0.15/0.57	1.95/1.52	1.87/1.60	2.00/1.15
PBE0/pcSseg-3	CDCl ₃	0.42/0.51	0.61/0.23	0.19/0.65	6.47/5.44	8.27/4.20	2.38/6.83
PBEP86/cc-pVTZ	CDCl₃	0.29/0.49	0.42/0.31	0.13/0.58	1.94/1.32	1.89/1.32	1.96/1.06

Table S59: MAD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹H			¹³ C		
	Solvt.	all	sp ²	sp ³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.37/0.44	0.63/0.18	0.18/0.63	5.19/4.50	7.51/3.13	2.00/6.37
PBEP86/cc-pVTZ	CCI_4	0.26/0.43	0.43/0.25	0.13/0.56	1.68/1.10	1.67/1.11	1.66/0.94
PBE0/pcSseg-3	$CDCl_3$	0.35/0.46	0.60/0.21	0.17/0.64	5.10/4.39	7.38/2.86	1.95/6.49
PBEP86/cc-pVTZ	$CDCl_3$	0.24/0.45	0.40/0.28	0.11/0.58	1.66/1.00	1.67/0.98	1.66/0.88

Table S60: Max. AD (ppm) of ¹H and ¹³C shifts calculated in the corresponding implicit solvent with geometries optimized in vacuum from the experimental values in CDCl₃ and CCl₄. But conversion to chemical shifts was done using Eq. (2) instead of Eq. (3). Two variants are given for each entry: conversion based on shifts of bridgehead CH of adamantane (left) or the innermost CH pairs of anthracene, respectively. Values are given for the complete carbon set (all), for only sp² carbons (sp²) and for only sp³ carbons (sp³).

DFT Method	Exp.	¹H			¹³ C		
	Solvt.	all	sp ²	sp³	all	sp ²	sp ³
PBE0/pcSseg-3	CCl ₄	0.85/0.83	0.85/0.38	0.40/0.83	19.4/14.1	19.4/14.1	5.67/11.0
PBEP86/cc-pVTZ	CCI_4	0.69/0.76	0.69/0.58	0.32/0.76	5.25/4.65	4.22/4.65	4.23/2.36
PBE0/pcSseg-3	CDCl ₃	0.86/0.81	0.86/0.41	0.38/0.81	18.5/13.0	18.5/13.0	5.60/11.0
PBEP86/cc-pVTZ	$CDCl_3$	0.68/0.78	0.68/0.62	0.30/0.78	5.12/4.20	4.23/4.20	4.08/2.37

Residual plots of experimental shifts and calculated shifts in vacuum using Eq. (3) with m = -1 for conversion

Figure S7: Residual plots between experimental and calculated chemical shifts in vacuum using Eq. (3) with m = -1 for conversion. Top ¹H. Bottom ¹³C.

Residual plots of experimental shifts and calculated shifts in implicit solvent using Eq. (3) with m = - 1 for conversion

Figure S8: Residual plots between experimental and calculated chemical shifts in implicit solvent using Eq. (3) with m = -1 for conversion. Top ¹H. Bottom ¹³C.

References

- 1 H. E. Gottlieb, V. Kotlyar and A. Nudelman, *Journal of Organic Chemistry*, 1997, **62**, 7512–7515.
- 2 H. Ito and T. Ito, *Chemistry Letters*, 1985, **14**, 1251–1254.
- 3 W. F. Bailey and E. A. Cioffi, *Magnetic Resonance in Chemistry*, 1987, **25**, 181–183.
- 4 M. D. Coburn, C. B. Storm, D. W. Moore and T. G. Archibald, *Magnetic Resonance in Chemistry*, 1990, **28**, 16–20.
- 5 R. Engelke, W. L. Earl and C. M. M. Rohlfing, *The Journal of Chemical Physics*, 1985, **84**, 142–146.
- 6 E. Pretsch, P. Bühlmann and M. Badertscher, *Spektroskopische Daten zur Strukturaufklärung* organischer Verbindungen, Springer, Berlin, Heidelberg, 2010.
- 7 C. Altona, J. H. Ippel, A. J. A. W. Hoekzema, C. Erkelens, M. Groesbeek and L. A. Donders, *Magnetic Resonance in Chemistry*, 1989, **27**, 564–576.
- 8 W. J. Colucci, S. J. Jungk and R. D. Gandour, *Magnetic Resonance in Chemistry*, 1985, **23**, 335–343.
- 9 U. B. Patil, S. S. Shendage and J. M. Nagarkar, *Synthesis (Germany)*, 2013, **45**, 3295–3299.
- 10 R. G. Kalkhambkar, S. D. Bunge and K. K. Laali, *Tetrahedron Letters*, 2011, **52**, 5184–5187.
- 11 J. Nakazawa, M. Mizuki, Y. Shimazaki, F. Tani and Y. Naruta, *Organic Letters*, 2006, **8**, 4275–4278.
- 12 H. Schumann, M. Speis, W. P. Bosman, J. M. M. Smits and P. T. Beurskens, *Journal of Organometallic Chemistry*, 1991, **403**, 165–182.
- 13 A. Fukuoka, T. Nagano, S. Furuta, M. Yoshizawa, M. Hirano and S. Komiya, *Bull Chem Soc Jpn*, 1998, **71**, 1409–1415.
- R. A. Aitken, D. M. M. Farrell and E. H. M. Kirton, *Chemistry of Heterocyclic Compounds*, 2001, 37, 1526–1531.
- 15 C. Bonfio, C. Caumes, C. D. Duffy, B. H. Patel, C. Percivalle, M. Tsanakopoulou and J. D. Sutherland, *J Am Chem Soc*, 2019, **141**, 3934–3939.
- 16 S. R. Sheng, L. L. Wu and X. Huang, *Journal of Chemical Research Part S*, 2003, 258–259.
- 17 B. Capon and B. Guo, *J Am Chem Soc*, 1988, **110**, 5144–5147.
- 18 M. Niestroj and W. P. Neumann, *Chem Ber*, 1996, **129**, 45–51.
- 19 M. R. Rohman, M. Rajbangshi, B. M. Laloo, P. R. Sahu and B. Myrboh, *Tetrahedron Letters*, 2010, **51**, 2862–2864.
- 20 C. K. Lin and T. J. Lu, *Tetrahedron*, 2010, **66**, 9688–9693.
- 21 G. V. Markin, Y. A. Shevelev, G. A. Domrachev, G. K. Fukin, E. V. Baranov, M. A. Lopatin, V. A. Kuropatov, A. I. Kirillov, A. S. Shavyrin and Y. A. Kurskii, *Russian Chemical Bulletin*, 2008, **57**, 1970–1974.
- 22 J. A. Campbell, G. McDougald, H. McNab, L. V. C. Rees and R. G. Tyas, *Synthesis (Stuttg)*, 2007, **20**, 3179–3184.
- 23 Chemical Book, https://www.chemicalbook.com/SpectrumEN_1120-64-5_13CNMR.htm, (accessed May 24, 2021).
- G. Bresciani, F. Marchetti and G. Pampaloni, *New Journal of Chemistry*, 2019, **43**, 10821–10825.
- 25 M. E. Jung and K. R. Buszek, *J Am Chem Soc*, 1988, **110**, 3965–3969.

- 26 J. E. Baldwin and K. A. Black, *J Am Chem Soc*, 1984, **106**, 1029–1040.
- 27 R. A. Aitken and N. Karodia, *Liebigs Annales*, 1997, 779–783.
- 28 N. C. Rol and A. D. H. Clague, Organic Magnetic Resonance, 1981, 16, 187–194.
- 29 B. Xu, E. M. Hartigan, G. Feula, Z. Huang, J. P. Lumb and B. A. Arndtsen, *Angewandte Chemie International Edition*, 2016, **55**, 15802–15806.
- 30 M. Mąkosza and M. Judka, *Chemistry A European Journal*, 2002, **8**, 4234–4240.
- 31 J. C. Chalchat, R. Ph. Garry, B. Lacroix and A. Michet, *Magnetic Resonance in Chemistry*, 1985, **23**, 977–984.
- 32 A. Gonzalez-De-Castro, C. M. Robertson and J. Xiao, *J Am Chem Soc*, 2014, **136**, 8350–8360.
- 33 X. Xie and S. S. Stahl, J Am Chem Soc, 2015, **137**, 3767–3770.
- 34 T. Mori, C. Ishii and M. Kimura, *Organic Process Research and Development*, 2019, **23**, 1709–1717.
- 35 Y. Tang, R. I. L. Meador, C. T. Malinchak, E. E. Harrison, K. A. McCaskey, M. C. Hempel and T. W. Funk, *Journal of Organic Chemistry*, 2020, **85**, 1823–1834.
- 36 V. Bertolini, R. Appiani, M. Pallavicini and C. Bolchi, *Journal of Organic Chemistry*, 2021, **86**, 15712–15716.
- 37 G. Tang, Z. Gong, W. Han and X. Sun, *Tetrahedron Letters*, 2018, **59**, 658–662.
- 38 K. Paudel, B. Pandey, S. Xu, D. K. Taylor, D. L. Tyer, C. L. Torres, S. Gallagher, L. Kong and K. Ding, Organic Letters, 2018, **20**, 4478–4481.
- 39 Y. Zheng, J. Zhang, X. Cheng, X. Xu and L. Zhang, *Angewandte Chemie*, 2019, **131**, 5295–5299.
- 40 P. Thapa, S. Hazoor, B. Chouhan, T. T. Vuong and F. W. Foss, *Journal of Organic Chemistry*, 2020, **85**, 9096–9105.
- 41 S. A. Miller, J. M. Bobbitt and N. E. Leadbeater, *Organic and Biomolecular Chemistry*, 2017, **15**, 2817–2822.
- 42 M. Avi, M. H. Fechter, K. Gruber, F. Belaj, P. Pöchlauer and H. Griengl, *Tetrahedron*, 2004, **60**, 10411–10418.
- 43 E. C. Taylor and J. E. Macor, *Journal of Organic Chemistry*, 1989, **54**, 1249–1256.
- 44 D. R. Goud and U. Pathak, *Synthesis (Stuttg)*, 2012, **44**, 3678–3682.
- 45 B. Ilkgul, D. Gunes, O. Sirkecioglu and N. Bicak, *Tetrahedron Letters*, 2010, **51**, 5313–5315.
- 46 T. M. Barclay, I. del Río, R. A. Gossage and S. M. Jackson, *Canadian Journal of Chemistry*, 2003, **81**, 1482–1491.
- 47 Chemical Book, https://www.chemicalbook.com, (accessed December 14, 2021).
- 48 R. A. Nyquist, R. Streck and G. Jeschek, *Journal of Molecular Structure*, 1996, **377**, 113–128.
- R. J. Abraham, B. Bardsley, M. Mobli and R. J. Smith, *Magnetic Resonance in Chemistry*, 2005, 43, 3–15.
- 50 N. J. R. van Eikema Hommes and T. Clark, *Journal of Molecular Modeling*, 2005, **11**, 175–185.
- 51 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- 52 A. I. Popov, A. J. Smetana, J. P Kintzinger and T. T.-T. Nguyêen, *Helvetica Chimica Acta*, 1980, 63, 668–673.

- 53 R. I. Khusnutdinov, N. A. Shchadneva, A. R. Baiguzina, Y. Y. Lavrentieva and U. M. Dzhemilev, *Russian Chemical Bulletin*, 2002, **51**, 2074–2079.
- 54 S. Zahim, K. Delacroix, A. Carlier, T. Berranger, J. Bergraser, P. G. Echeverria and L. Petit, *Organic Process Research and Development*, 2022, **26**, 199–206.
- 55 A. B. Smith, R. A. Rivero, K. J. Hale and H. A. Vaccaro, *J Am Chem Soc*, 1991, **113**, 2092–2112.
- L. Anzalone and J. A. Hirsch, *Journal of Organic Chemistry*, 1985, **50**, 2607–2613.
- 57 K. Ogura, M. Yamashita, M. Suzuki, S. Furukawa and G. I. Tsuchihashi, *Bull Chem Soc Jpn*, 1984, **57**, 1637–1642.
- 58 G. R. Newkome, V. K. Gupta, R. W. Griffin and S. Arai, *Journal of Organic Chemistry*, 1987, **52**, 5480–5482.
- 59 S. Seo, J. B. Taylor and M. F. Greaney, *Chemical Communications*, 2012, **48**, 8270–8272.
- 60 S. Agasti, S. Maiti, S. Maity, M. Anniyappan, M. B. Talawar and D. Maiti, *Polyhedron*, 2019, **172**, 120–124.
- D. Tanini, C. Dalia and A. Capperucci, *Green Chemistry*, 2021, 23, 5680–5686.
- 62 S. Manna, S. Maity, S. Rana, S. Agasti and D. Maiti, *Organic Letters*, 2012, **14**, 1736–1739.
- 63 M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, H. G. Kruger, Z. Asgari, V. Khakyzadeh and M. Kazem-Rostami, *Journal of Organic Chemistry*, 2012, **77**, 3640–3645.
- 64 C. B. McPake, C. B. Murray and G. Sandford, *ChemSusChem*, 2012, **5**, 312–319.
- 65 R. R. Yadav, R. A. Vishwakarma and S. B. Bharate, *Tetrahedron Letters*, 2012, 53, 5958–5960.
- 66 G. Aridoss and K. K. Laali, *Journal of Organic Chemistry*, 2011, **76**, 8088–8094.
- 67 X. F. Wu, J. Schranck, H. Neumann and M. Beller, *Chemical Communications*, 2011, **47**, 12462–12463.
- 68 R. R. Biekofsky, A. B. Pomilio, R. A. Aristegui and R. H. Contreras, *Journal of Molecular Structure*, 1995, **344**, 143–150.
- B. M. Zimmermann, T. T. Ngoc, D. I. Tzaras, T. Kaicharla and J. F. Teichert, *J Am Chem Soc*, 2021, 143, 16865–16873.
- 70 J. Luo, B. Hu, A. Sam and T. L. Liu, Organic Letters, 2018, 20, 361–364.
- 71 I. K. Sideri, E. Voutyritsa and C. G. Kokotos, *Synlett*, 2018, **29**, 1324–1328.
- 72 Y. Xiao, Y. Xu, H. S. Cheon and J. Chae, *Journal of Organic Chemistry*, 2013, **78**, 5804–5809.
- 73 H. Jiang, L. Lykke, S. U. Pedersen, W. J. Xiao and K. A. Jyørgensen, *Chemical Communications*, 2012, **48**, 7203–7205.
- 74 H. J. Xu, Y. F. Liang, Z. Y. Cai, H. X. Qi, C. Y. Yang and Y. S. Feng, *Journal of Organic Chemistry*, 2011, **76**, 2296–2300.
- 75 L. Jing, J. Wei, L. Zhou, Z. Huang, Z. Li and X. Zhou, *Chemical Communications*, 2010, **46**, 4767–4769.
- T. Moriuchi, K. Kikushima, T. Kajikawa and T. Hirao, *Tetrahedron Letters*, 2009, **50**, 7385–7387.
- G. Grossman, G. Komber, G. Kroshvitts, P. A. Kirpichnikov, N. A. Mukmeneva and D. G. Pobedimskii, *Bulletin of the Academy of Sciences of the USSR Division of Chemical Science*, 1989, 38, 26–32.
- 78 K. Chen, C. Liu, L. Deng and G. Xu, *Steroids*, 2010, **75**, 513–516.

- 79 A. Bagno, S. Gerard, J. Kevelam, E. Menna and G. Scorrano, *Chemistry A European Journal*, 2000, **6**, 2915–2924.
- T. Shirai, K. Sugimoto, M. Iwasaki, R. Sumida, H. Fujita and Y. Yamamoto, *Synlett*, 2019, **30**, 972–976.
- 81 Z. Yan, X.-A. Yuan, Y. Zhao, C. Zhu and J. Xie, *Angewandte Chemie*, 2018, **130**, 13088–13092.
- 82 P. W. Jardon, E. H. Vickery, L. F. Pahler, N. Pourahmady, G. J. Mains and E. J. Eisenbraun, *Journal of Organic Chemistry*, 1984, **49**, 2130–2135.
- 83 I. I. Schuster, M. Parvez and A. J. Freyer, *Journal of Organic Chemistry*, 1988, **53**, 5819–5825.
- N. R. Babij, E. O. McCusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V. D. Amicis,
 N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M.
 R. Smith and Q. Yang, Organic Process Research and Development, 2016, 20, 661–667.
- 85 Y. Sawama, Y. Yabe, M. Shigetsura, T. Yamada, S. Nagata, Y. Fujiwara, T. Maegawa, Y. Monguchi and H. Sajiki, *Advanced Synthesis and Catalysis*, 2012, **354**, 777–782.
- 86 M. Mansour, R. Giacovazzi, A. Ouali, M. Taillefer and A. Jutand, *Chemical Communications*, 2008, 6051–6053.
- 87 T. Shintou, W. Kikuchi and T. Mukaiyama, *Bull Chem Soc Jpn*, 2003, **76**, 1645–1667.
- 88 P. G. Dumanski, C. J. Easton, S. F. Lincoln and J. S. Simpson, *Australian Journal of Chemistry*, 2003, **56**, 1107–1111.
- 89 R. J. Abraham and M. Reid, *Journal of the Chemical Society. Perkin Transactions 2*, 2002, **2**, 1081–1091.
- 90 T. Guo, Y. Gao, Z. Li, J. Liu and K. Guo, *Synlett*, 2019, **30**, 329–332.
- 91 L. X. Chen, Y. H. Huang, H. Cong and Z. Tao, *Chemical Papers*, 2018, **72**, 661–667.
- 92 H. Zou, C. Hu, K. Chen, G. Xiao and X. Peng, *Synlett*, 2018, **29**, 2181–2184.
- 93 L. Zhang, Z. Zha, Z. Wang and S. Fu, *Tetrahedron Letters*, 2010, **51**, 1426–1429.
- A. Wang and H. Jiang, *Journal of Organic Chemistry*, 2010, **75**, 2321–2326.
- 95 B. Yu, Y. Zhao, H. Zhang, J. Xu, L. Hao, X. Gao and Z. Liu, *Chemical Communications*, 2014, **50**, 2330–2333.
- 96 D. W. Tan, J.-B. Xie, Q. Li, H.-X. Li, J.-C. Li, H.-Y. Li and J.-P. Lang, *Dalton Transactions*, 2014, **43**, 14061–14071.
- P. Wang, J. Cai, J. Yang, C. Sun, L. Li, H. Hu and M. Ji, *Tetrahedron Letters*, 2013, 54, 533–535.
- 98 Y. Zhu, B. Zhao and Y. Shi, *Organic Letters*, 2013, **15**, 992–995.
- 99 Y. Wang, H. Zhao, Z. Hu, M. Kimura, Z. Zhiqiang, L. Peng and K. Hiratsuka, *Synthesis (Stuttg)*, 2011, **2**, 287–291.
- 100 L. Yu, H. Li, X. Zhang, J. Ye, J. Liu, Q. Xu and M. Lautens, *Organic Letters*, 2014, **16**, 1346–1349.
- 101 X. Zhang, J. Sun, Y. Ding and L. Yu, Organic Letters, 2015, 17, 5840–5842.
- 102 Y. Suzuki, T. Yoshino, K. Moriyama and H. Togo, *Tetrahedron*, 2011, **67**, 3809–3814.
- 103 X. Tian, Y. L. Ren, F. Ren, X. Cheng, S. Zhao and J. Wang, *Synlett*, 2018, **29**, 2444–2448.
- 104 R. M. Denton, J. An, P. Lindovska and W. Lewis, *Tetrahedron*, 2012, **68**, 2899–2905.
- 105 B. V. Rokade, S. K. Malekar and K. R. Prabhu, *Chemical Communications*, 2012, **48**, 5506–5508.
- 106 S. Zheng, C. Yu and Z. Shen, *Organic Letters*, 2012, **14**, 3644–3647.

- 107 S. R. Mudshinge, C. S. Potnis, B. Xu and G. B. Hammond, *Green Chemistry*, 2020, 22, 4161–4164.
- 108 W. Zhan, M. Tong, L. Ji, H. Zhang, Z. Ge, X. Wang and R. Li, *Chinese Chemical Letters*, 2019, **30**, 973–976.
- 109 Y. L. Ban, J. L. Dai, X. L. Jin, Q. B. Zhang and Q. Liu, *Chemical Communications*, 2019, **55**, 9701–9704.
- 110 T. P. Petersen, A. F. Larsen, A. Ritzén and T. Ulven, *Journal of Organic Chemistry*, 2013, **78**, 4190–4195.
- 111 Z. Guo, T. Pang, L. Yan, X. Wei, J. Chao and C. Xi, *Green Chemistry*, 2021, **23**, 7534–7538.
- 112 D. Wang, D. Kuang, F. Zhang, C. Yang and X. Zhu, *Advanced Synthesis and Catalysis*, 2015, **357**, 714–718.
- 113 C. Yang, F. Zhang, G. J. Deng and H. Gong, *Journal of Organic Chemistry*, 2019, **84**, 181–190.
- 114 V. Goyal, J. Gahtori, A. Narani, P. Gupta, A. Bordoloi and K. Natte, *Journal of Organic Chemistry*, 2019, **84**, 15389–15398.
- 115 S. Gupta, P. Sureshbabu, A. K. Singh, S. Sabiah and J. Kandasamy, *Tetrahedron Letters*, 2017, **58**, 909–913.
- 116 Y. A. Cheng, W. Z. Yu and Y. Y. Yeung, *Journal of Organic Chemistry*, 2016, **81**, 545–552.
- 117 G. Bian, H. Fan, S. Yang, H. Yue, H. Huang, H. Zong and L. Song, *Journal of Organic Chemistry*, 2013, **78**, 9137–9142.
- 118 A. Sakakura, M. Katsukawa and K. Ishihara, Organic Letters, 2005, 7, 1999–2002.
- 119 J. Clark and G. Hitiris, Spectrochimica Acta Part A: Molecular Spectroscopy, 1984, 40, 75–79.
- 120 V. L. Novikov, O. P. Shestak and V. A. Denisenko, *Russian Chemical Bulletin*, 2010, **59**, 1600–1604.
- 121 V. Gold and T. Mah, Journal of the Chemical Society, Perkin Transactions 2, 1981, 812–816.
- 122 A. Shahrisa, R. Tabrizi and H. R. Ahsani, *Organic Preparations and Procedures International*, 2000, **32**, 47–55.
- 123 Y. Li, X. Liu, H. Jiang, B. Liu, Z. Chen and P. Zhou, *Angewandte Chemie International Edition*, 2011, **50**, 6341–6345.
- 124 F. Xu, Y. L. Zhong, H. Li, J. Qi, R. Desmond, Z. J. Song, J. Park, T. Wang, M. Truppo, G. R. Humphrey and R. T. Ruck, *Organic Letters*, 2017, **19**, 5880–5883.
- 125 A. S. Shashkov, E. G. Cherepanova, L. I. Kas'yan, L. Y. Gnedenkov and M. F. Bombushkar', *Bulletin of the Academy of Sciences of the USSR Division of Chemical Science*, 1980, **29**, 382–387.
- 126 R. T. Boeré, J. A. Eng, K. Preuss, M. Parvez, C. D. Bryan and A. W. Cordes, *Canadian Journal of Chemistry*, 1994, **72**, 1171–1180.
- 127 R. J. Abraham and J. Fisher, *Magnetic Resonance in Chemistry*, 1985, 23, 856–861.
- 128 D. A. Lanfranchi, M. Vellutini, M. C. Blanc, P. Bradesi, J. Casanova and F. Tomi, *Spectroscopy Letters*, 2010, **43**, 36–43.
- 129 University of Florida Research Foundation, USA PCT/US2O12/068943, (WO2013/090260), 60.
- 130 R. Koçak, G. Borsato, O. de Lucchi and A. Daştan, *Helvetica Chimica Acta*, 2014, **97**, 537–545.
- 131 G. F. Gauze, E. A. Basso, M. G. Campos, R. Rittner and R. J. Abraham, *Journal of Physical Organic Chemistry*, 2006, **19**, 376–383.
- 132 M. Uyanik, R. Fukatsu and K. Ishihara, *Chemistry An Asian Journal*, 2010, **5**, 456–460.

- 133 R. Labes, C. Battilocchio, C. Mateos, G. R. Cumming, O. de Frutos, J. A. Rincón, K. Binder and S. v. Ley, *Organic Process Research and Development*, 2017, **21**, 1419–1422.
- 134 M. C. Boucenna, J. S. Davidson, A. McKee, A. L. Porte and D. C. Apperley, *Journal of the Chemical Society, Perkin Transactions 2*, 1995, **2**, 1381–1387.
- 135 P. -A Carrupt and P. Vogel, *Helvetica Chimica Acta*, 1989, **72**, 1008–1028.
- 136 R. J. Abraham and N. J. Ainger, *Journal of the Chemical Society. Perkin Transactions 2*, 1999, 441–448.
- 137 R. J. Abraham, D. J. Chadwick, P. E. Smith and F. Sancassan, *Journal of the Chemical Society, Perkin Transactions 2*, 1989, 1377–1384.
- H. Zhang, S. Fu, M. Tao, Z. Liao, C. Qian and X. Chen, *Research on Chemical Intermediates*, 2016, 42, 3325–3332.
- 139 F. Ballaschk and S. F. Kirsch, *Green Chemistry*, 2019, **21**, 5896–5903.
- 140 J. L. Mieloszynski, M. Schneider, D. Paquet and C. G. Andrieu, *Recueil des Travaux Chimiques des Pays-Bas*, 1985, **104**, 9–15.
- 141 K. Walsh, H. F. Sneddon and C. J. Moody, Organic Letters, 2014, 16, 5224–5227.
- 142 T. Mori, Y. Takeuchi and M. Hojo, *Tetrahedron Letters*, 2020, **61**, 151518.
- 143 D. Ye, Z. Liu, J. L. Sessler and C. Lei, *Chemical Communications*, 2020, **56**, 11811–11814.
- 144 S. Budweg, K. Junge and M. Beller, *Chemical Communications*, 2019, **55**, 14143–14146.
- 145 J. Lee, S. Wang, M. Callahan and P. Nagorny, *Organic Letters*, 2018, **20**, 2067–2070.
- L. J. Mitchell and C. J. Moody, *Journal of Organic Chemistry*, 2014, **79**, 11091–11100.
- 147 S. Kawamorita, K. Yamazaki, H. Ohmiya, T. Iwai and M. Sawamura, *Advanced Synthesis and Catalysis*, 2012, **354**, 3440–3444.
- 148 C. Berini, O. H. Winkelmann, J. Otten, D. A. Vicic and O. Navarro, *Chemistry A European Journal*, 2010, **16**, 6857–6860.
- 149 P. H. Helferty and P. Yates, Organic Magnetic Resonance, 1983, 21, 352–356.
- 150 M. J. Aurell, P. Gaviña and R. Mestres, *Tetrahedron*, 1994, **50**, 2571–2582.
- 151 S. S. Shen, V. Kartika, Y. S. Tan, R. D. Webster and K. Narasaka, *Tetrahedron Letters*, 2012, **53**, 986–990.
- 152 H. M. Jhong, Y. H. Liu, S. M. Peng and S. T. Liu, *European Journal of Inorganic Chemistry*, 2016, 5449–5455.
- 153 C. Y. Chern, C. C. Tseng, R. H. Hsiao, F. F. Wong and Y. H. Kuo, *Heteroatom Chemistry*, 2019, 2019, 5053702.
- 154 R. Hosseinzadeh, E. Narimani and M. Mavvaji, *Organic Preparations and Procedures International*, 2021, **53**, 461–471.
- 155 C. Cheng and M. Brookhart, *Angewandte Chemie International Edition*, 2012, **51**, 9422–9424.
- 156 X. Qi, C. L. Li and X. F. Wu, *Chemistry A European Journal*, 2016, **22**, 5835–5838.
- 157 G. Sun, X. Lv, Y. Zhang, M. Lei and L. Hu, Organic Letters, 2017, **19**, 4235–4238.
- 158 Z. Liu, P. Wang, Z. Yan, S. Chen, D. Yu, X. Zhao and T. Mu, *Beilstein Journal of Organic Chemistry*, 2020, **16**, 645–656.
- 159 T. Niu, S. Chen, M. Hong, T. Zhang, J. Chen, X. Dong and B. Ni, *Green Chemistry*, 2020, **22**, 5042– 5049.

- 160 H. Zhang, T. Guo, M. Wu, X. Huo, S. Tang, X. Wang and J. Liu, *Tetrahedron Letters*, 2021, **67**, 152878.
- 161 S. Pradhan, V. Sharma and I. Chatterjee, Organic Letters, 2021, 23, 6148–6152.
- 162 M. Hayashi, M. Shibuya and Y. Iwabuchi, *Journal of Organic Chemistry*, 2012, **77**, 3005–3009.
- 163 K. Ohsawa, M. Yoshida and T. Doi, Journal of Organic Chemistry, 2013, 78, 3438–3444.
- 164 C. Zhu, Z. Zhang, W. Ding, J. Xie, Y. Chen, J. Wu, X. Chen and H. Ying, *Green Chemistry*, 2014, **16**, 1131–1138.
- 165 I. Ramos-Tomillero, M. Paradís-Bas, I. de Pinho Ribeiro Moreira, J. M. Bofill, E. Nicolás and F. Albericio, *Molecules*, 2015, **20**, 5409–5422.
- 166 R. Ray, S. Chandra, D. Maiti and G. K. Lahiri, *Chemistry A European Journal*, 2016, **22**, 8814–8822.
- 167 S. S. Meng, L. R. Lin, X. Luo, H. J. Lv, J. L. Zhao and A. S. C. Chan, *Green Chemistry*, 2019, **21**, 6187–6193.
- 168 P. Xiao, Z. Tang, K. Wang, H. Chen, Q. Guo, Y. Chu, L. Gao and Z. Song, *Journal of Organic Chemistry*, 2018, **83**, 1687–1700.
- 169 T. Murata, M. Hiyoshi, M. Ratanasak, J. Y. Hasegawa and T. Ema, *Chemical Communications*, 2020, **56**, 5783–5786.
- 170 B. Hong, K. C. C. Aganda and A. Lee, *Organic Letters*, 2020, **22**, 4395–4399.
- 171 N. F. Nikitas, D. I. Tzaras, I. Triandafillidi and C. G. Kokotos, *Green Chemistry*, 2020, **22**, 471–477.
- 172 L. A. Trimble, P. B. Reese and J. C. Vederas, *J Am Chem Soc*, 1985, **107**, 2175–2177.
- 173 V. P. Kashparova, V. A. Klushin, I. Y. Zhukova, I. S. Kashparov, D. v. Chernysheva, I. B. Il'chibaeva, N. v. Smirnova, E. S. Kagan and V. M. Chernyshev, *Tetrahedron Letters*, 2017, **58**, 3517–3521.
- 174 S. Imai and H. Togo, *Tetrahedron*, 2016, **72**, 6948–6954.
- 175 M. linuma, K. Moriyama and H. Togo, *European Journal of Organic Chemistry*, 2014, 772–780.
- 176 P. Saisaha, L. Buettner, M. van der Meer, R. Hage, B. L. Feringa, W. R. Browne and J. W. de Boer, Advanced Synthesis and Catalysis, 2013, **355**, 2591–2603.
- 177 A. N. Mamros, P. R. Sharrow, W. E. Weller, M. R. Luderer, J. D. Fair, K. O. Pazehoski and M. R. Luderer, *Arkivoc*, 2011, **2011**, 23–33.
- 178 D. Tsuchiya, K. Moriyama and H. Togo, *Synlett*, 2011, **18**, 2701–2704.
- 179 N. Chang and C. Chiu, *Journal of the Chinese Chemical Society*, 1993, **40**, 379–384.
- 180 V. Kanchupalli, D. Joseph and S. Katukojvala, Organic Letters, 2015, 17, 5878–5881.
- 181 K. Shibata, K. I. Takao and A. Ogura, *Journal of Organic Chemistry*, 2021, **86**, 10067–10087.
- 182 J. C. A. Flanagan, L. M. Dornan, M. G. McLaughlin, N. G. McCreanor, M. J. Cook and M. J. Muldoon, *Green Chemistry*, 2012, **14**, 1281–1283.
- 183 Y. Motoyama, K. Kamo and H. Nagashima, Organic Letters, 2009, 11, 1345–1348.
- 184 F. Schoenebeck, J. A. Murphy, S. Z. Zhou, Y. Uenoyama, Y. Miclo and T. Tuttle, *J Am Chem Soc*, 2007, **129**, 13368–13369.
- 185 J. Siu, I. R. Baxendale and S. v. Ley, Organic and Biomolecular Chemistry, 2004, **2**, 160–167.
- 186 C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid and P. Knochel, *Tetrahedron*, 2003, **59**, 1571–1587.
- 187 M. Topolski, *Journal of Organic Chemistry*, 1995, **60**, 5588–5594.

- 188 Y. Akita, Y. Itagaki, S. Takizawa and A. Ohta, *Chemical and Pharmaceutical Bulletin*, 1989, **37**, 1477–1480.
- 189 E. M. M. van den Berg, F. J. H. M. Jansen, A. T. J. W. de Goede, A. U. Baldew and J. Lugtenburg, *Recueil des Travaux Chimiques des Pays-Bas*, 1990, **109**, 287–297.
- 190 X. Guo, Z. Peng, S. Jiang and J. Shen, *Synthetic Communications*, 2011, **41**, 2044–2052.
- 191 E. B. McLean, D. T. Mooney, D. J. Burns and A. L. Lee, *Organic Letters*, 2022, 24, 686–691.
- 192 W. Qiu, S. Shi, R. Li, X. Lin, L. Rao and Z. Sun, *Chinese Journal of Chemistry*, 2021, **39**, 1255–1258.
- 193 T. Fukuyama, Y. Hamada and I. Ryu, *Synthesis (Germany)*, 2021, **53**, 3404–3408.
- 194 T. Fukuyama, Y. Fujita, H. Miyoshi, I. Ryu, S. C. Kao and Y. K. Wu, *Chemical Communications*, 2018, **54**, 5582–5585.
- 195 R. Pilli, V. Balakrishnan, R. Chandrasekaran and R. Rasappan, *Organic and Biomolecular Chemistry*, 2019, **17**, 1749–1753.
- 196 S. C. Richter and M. Oestreich, *Chemistry A European Journal*, 2019, **25**, 8508–8512.
- 197 K. Zhang, L. Chang, Q. An, X. Wang and Z. Zuo, *J Am Chem Soc*, 2019, **141**, 10556–10564.
- 198 Y. Ding, S. Luo, L. Ma and J. An, *Journal of Organic Chemistry*, 2019, 84, 17.
- 199 M. C. Haibach, B. M. Stoltz and R. H. Grubbs, *Angewandte Chemie*, 2017, **129**, 15319–15322.
- 200 A. Dewanji, C. Mück-Lichtenfeld and A. Studer, *Angewandte Chemie International Edition*, 2016, **55**, 6749–6752.
- 201 N. Khan, A. C. Abhyankar, T. Nandi and N. Eswara Prasad, *Journal of Nanoscience and Nanotechnology*, 2019, **19**, 7982–7992.
- 202 R. J. Abraham, M. Canton and L. Griffiths, *Magnetic Resonance in Chemistry*, 2001, **39**, 421–431.
- 203 T. Laurens, D. Nicole, P. Rubini, J. C. Lauer, M. Matlengiewicz and N. Henzel, *Magnetic Resonance in Chemistry*, 1991, **29**, 1119–1129.
- 204 D. Schnurpfeil, *Journal für Praktische Chemie*, 1983, **325**, 481–488.
- 205 E. Fanghänel, Y. Keita, R. Radeglia and W. Schmidt, *Journal für Praktische Chemie*, 1985, **327**, 837–846.
- U. Niggli and M. Neuenschwander, *Helvetica Chimica Acta*, 1990, **73**, 2199–2208.
- 207 M. Leyendecker, N.-C. Meyer and C. M. Thiele, *Angewandte Chemie*, 2017, **129**, 11629–11632.
- 208 A. Gopi Krishna Reddy and G. Satyanarayana, *Journal of Organic Chemistry*, 2016, **81**, 12212– 12222.
- 209 D. Heijnen, F. Tosi, C. Vila, M. C. A. Stuart, P. H. Elsinga, W. Szymanski and B. L. Feringa, *Angewandte Chemie - International Edition*, 2017, **56**, 3354–3359.
- 210 W. J. Shi and Z. J. Shi, *Chinese Journal of Chemistry*, 2018, **36**, 183–186.
- 211 A. Piontek, W. Ochędzan-Siodłak, E. Bisz and M. Szostak, *Advanced Synthesis and Catalysis*, 2019, **361**, 2329–2336.
- 212 K. Chen, W. Chen, X. Yi, W. Chen, M. Liu and H. Wu, *Chemical Communications*, 2019, **55**, 9287–9290.
- 213 A. Xia, X. Xie, X. Hu, W. Xu and Y. Liu, *Journal of Organic Chemistry*, 2019, **84**, 13841–13857.
- 214 V. Müller, D. Ghorai, L. Capdevila, A. M. Messinis, X. Ribas and L. Ackermann, Organic Letters, 2020, 22, 7034–7040.
- 215 H. Fang and M. Oestreich, *Angewandte Chemie International Edition*, 2020, **59**, 11394–11398.

- 216 V. G. Landge, R. Babu, V. Yadav, M. Subaramanian, V. Gupta and E. Balaraman, *Journal of Organic Chemistry*, 2020, **85**, 9876–9886.
- 217 G. Dilauro, A. Francesca Quivelli, P. Vitale, V. Capriati and F. M. Perna, *Angewandte Chemie*, 2019, **131**, 1813–1816.
- 218 J. C. Wan, J. M. Huang, Y. H. Jhan and J. C. Hsieh, Organic Letters, 2013, 15, 2742–2745.
- 219 W. Guo, L.-Q. Lu, Y. Wang, Y.-N. Wang, J.-R. Chen and W.-J. Xiao, *Angewandte Chemie*, 2015, **127**, 2293–2297.
- 220 J. Tang, S. Zhao, Y. Wei, Z. Quan and C. Huo, *Organic and Biomolecular Chemistry*, 2017, **15**, 1589–1592.
- A. Joshi, R. Kumar, R. Semwal, D. Rawat and S. Adimurthy, *Green Chemistry*, 2019, **21**, 962–967.
- 222 X. Zhu, C. Liu, Y. Liu, H. Yang and H. Fu, *Chemical Communications*, 2020, 56, 12443–12446.
- 223 Y. F. Tan, Y. Chen, R. X. Li, Z. Guan and Y. H. He, *Tetrahedron Letters*, 2022, **89**, 153593.
- S. S. R. Gupta and M. Lakshmi Kantam, New Journal of Chemistry, 2021, 45, 16179–16186.
- 225 Y. Sakurai, K. Ikai, K. Hayakawa, Y. Ogiwara and N. Sakai, *Bull Chem Soc Jpn*, 2021, **94**, 1882– 1893.
- 226 T. Li, G. B. Hammond and B. Xu, *Chemistry A European Journal*, 2021, **27**, 9737–9741.
- 227 Y. Tian, X. Guo, M. Li, C. Li, X. Hu, L. Jin, N. Sun, B. Hu and Z. Shen, *Organic Letters*, 2021, **23**, 3928–3932.
- L. Chen, S. Wang, P. Werz, Z. Han and D. P. Gates, *Heteroatom Chemistry*, 2018, 29, e21474.
- 229 G. Cheng and M. Luo, European Journal of Organic Chemistry, 2011, 2519–2523.
- 230 C. Wang, J. Wan, Z. Zheng and Y. Pan, *Tetrahedron*, 2007, **63**, 5071–5075.
- 231 M. Westermayer, G. Häfelinger and C. Regelmann, *Tetrahedron*, 1984, **40**, 1845–1854.
- S. B. Choe and K. J. Klabunde, *Journal of Organometallic Chemistry*, 1989, **359**, 409–418.
- 233 S. Saito, T. Ohwada and K. Shudo, J Am Chem Soc, 1995, 117, 11081–11084.
- 234 Y. A. Ibrahim, N. A. Al-Awadi and K. Kaul, *Tetrahedron*, 2001, **57**, 7377–7381.
- 235 I. I. Schuster, *Journal of Organic Chemistry*, 1981, **46**, 5110–5118.
- 236 W. Kitching, H. A. Olszowy, I. Schott, W. Adcock and D. P. Cox, *Journal of Organometallic Chemistry*, 1986, **310**, 269–284.
- 237 R. J. Abraham, M. Canton, M. Reid and L. Griffiths, *Journal of the Chemical Society. Perkin Transactions 2*, 2000, 803–812.