Supplementary information

Defect Management by Cesium Fluoride-modified Electron Transport Layer Promotes Perovskite Solar Cells

Xiangning Xu,^{‡a} Zhichao Lin,^{‡a} Qingbin Cai,^a Hongye Dong,^a Xinli Wang^a and Cheng Mu^{*a}

a Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry Renmin University of China, Beijing, 100872, P. R. China.

Table S1. Band gap (E_g), secondary-electron cut-off ($E_{cut-off}$), Fermi level (E_F), valence band energy (E_{VB}), and conduction band energy (E_{CB}) of the original SnO₂ and the CsF-modified double-layer SnO₂ ETLs.

Sample	$E_{g}(eV)$	$E_{\text{cut-off}} (\text{eV})$	$E_{\rm F}({\rm eV})$	$E_{\rm VB}({\rm eV})$	$E_{\rm CB}~({\rm eV})$
SnO ₂	3.60	16.68	4.54	7.65	4.68
CsF-SnO ₂	3.63	16.04	5.18	8.28	4.02

Table S2. Fitting parameters of TRPL spectra (excitation wavelength 475 nm) of perovskite films based on the original SnO_2 and the CsF-modified double-layer SnO_2 substrates.

Sample	A ₁	τ_1 (ns)	A ₂	τ_2 (ns)	$ au_{\mathrm{AVE}}$ (ns)
SnO ₂	0.251	24.89	0.751	600.82	592.95
CsF-SnO ₂	0.229	8.87	0.729	263.50	260.83

 Table S3.
 Summary of the photovoltaic parameters of the PSCs based on different concentrations of ETLs.

Sample	$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA/cm^2})$	FF	PCE (%)
SnO ₂	1.114	23.00	0.763	19.80
0.5 mg/mL CsF-SnO ₂	1.158	22.78	0.773	20.38

1.0 mg/mL CsF-SnO ₂	1.159	23.27	0.778	20.98
2.0 mg/mL CsF-SnO ₂	1.137	23.76	0.757	20.45

Table S4. V_{TFL} and N_{t} of the perovskite films based on original SnO₂ and CsF-modified doublelayer SnO₂ ETLs.

Sample	L (nm)	3	$V_{\mathrm{TFL}}\left(\mathrm{V} ight)$	$N_{\rm t}$ (×10 ¹⁵ cm ⁻³)
SnO ₂	780	42.3	0.22	1.69
CsF-SnO ₂	780	42.3	0.15	1.15

 Table S5. The fitted parameters of the electrical impedance spectroscopy measurements under

 darkness of original and CsF-modified PSCs.

Samples	$R_{ m rec}~(\Omega~{ m cm}^2)$
SnO ₂	$0.77 imes 10^4$
CsF-SnO ₂	$1.45 imes 10^4$

Fig. S1 (a), (b) ultraviolet photoelectron spectroscopy and c) ultraviolet-visible spectra of the original SnO_2 and CsF-modified double-layer SnO_2 films.

Fig. S2 X-ray diffraction patterns of the original SnO_2 and CsF-modified double-layer SnO_2 films.

Fig. S3 High-resolution F 1s X-ray photoelectron spectroscopy spectra of the original SnO_2 and CsF-modified double-layer SnO_2 films.

Fig. S4 Top view scanning electron microscopy images of (a) original SnO_2 and (b) CsFmodified double-layer SnO_2 films deposited on the ITO substrates.

Fig. S5 Statistical distribution diagram of grain size of perovskite films deposited on the (a),(b) original SnO₂ and (c), (d) CsF-modified double-layer SnO₂ ETLs.

Fig. S6 J-V curves of the champion PSCs based on the (a) original SnO₂ and (b) CsF-modified double-layer SnO₂ ETLs.

Fig. S7 J–V curves of the PSCs based on different concentrations of CsF-modified SnO₂ ETLs.