Supporting Information

Studies on the Photoelectronic Properties of Manganese (Mn)-doped Lead-free Double Perovskite

Shaoming Xue,¹ Qiaoqian Wu,¹ Qiuhong Huo,^{1,2} Jun Mi,^{1,2} ChengBo Guan,¹ Wei-Yan Cong,¹ Zhenkui Zhang³ and Junfeng Ren⁴ Ying-Bo Lu,^{1,2,a)}

¹ School of Space Science and Physics, Shandong University, Weihai 264209, China

² Physical-Chemical Materials Analytical & Testing Center, Shandong University, Weihai 264209, China

³ School of Science, Langfang Normal University, Langfang 065000, China

⁴ School of Physics and Electronics, Shandong Normal University, Jinan 250014,

China

^{a)} Author to whom correspondence should be addressed.

Electronic mail: lyb@sdu.edu.cn.

Figure S1. Geometric structures of $Cs_2NaBiCl_6$ containing the (a) Mn_{Cs} defects (b) $Mn_{Na}V_{Cs}$ defects (c) $Mn_{Na}V_{Na}$ defects (d) $Mn_{Na}Mn_{Bi}$ defects (local structure of Mn_{Na} in $Mn_{Na}Mn_{Bi}$ defects) (e) $Mn_{Na}Mn_{Bi}$ defects (local structure of Mn_{Bi} in $Mn_{Na}Mn_{Bi}$ defects) (f) Mn_{Na} defects (g) $Mn_{Bi}V_{Cl}$ defects, respectively.

Figure S2. Geometric structures of $Cs_2AgBiCl_6$ containing the (a) Mn_{Cs} defects (b) $Mn_{Ag}V_{Cs}$ defects (c) $Mn_{Ag}Mn_{Bi}$ defects (local structure of Mn_{Ag} in $Mn_{Ag}Mn_{Bi}$ defects) (d) $Mn_{Ag}Mn_{Bi}$ defects (local structure of Mn_{Bi} in $Mn_{Ag}Mn_{Bi}$ defects) (e) $Mn_{Bi}V_{Cl}$ defects (f) Mn_{Ag} defects (g) $Mn_{Ag}V_{Ag}$ defects, respectively.

Figure S3. Scheme to describe the splitting of d-orbital from the (a) spherical to the (b) octahedral crystal field, respectively, as a result of the interaction of metal orbitals with ligand orbitals.

		Distance (Å)	IpCOHP at E _F
$Cs_2NaBiCl_6:Mn^{2+}$	Cl6-Mn29	2.34	-2.10
	C110-Mn29	2.34	-2.10
	Cl14-Mn29	2.34	-2.04
	Cl18-Mn29	2.34	-2.04
	Cl22-Mn29	2.34	-1.98
	Cl26-Mn29	2.34	-1.98
	Ave. IpCOHP		-2.04
$Cs_2AgInCl_6:Mn^{2+}$	Cl6-Mn25	2.42	-1.66
	Cl13-Mn25	2.44	-1.62
	Cl14-Mn25	2.42	-1.66
	Cl15-Mn25	2.44	-1.62
	Cl16-Mn25	2.42	-1.72
	Cl17-Mn25	2.42	-1.72
	Ave. IpCOHP		-1.66

Table S1. Calculated IpCOHP in $Cs_2NaBiCl_6:Mn^{2+}$ and $Cs_2AgInCl_6:Mn^{2+}$ systems. The E_F represents the Fermi level.

The detailed descriptions of computing the change in Dq and B, C

For Cs₂NaBiCl₆:Mn²⁺ systems, the PLE band peaking at ~ 297 nm and 358 nm are ascribed to the ${}^{6}A_{1}({}^{6}S){}^{-4}T_{1}({}^{4}P)$ and ${}^{6}A_{1}({}^{6}S){}^{-4}T_{2}({}^{4}D)$ transitions of Mn²⁺, respectively. The orange-yellow PL peak at 577 nm is attributed to the ${}^{4}T_{1}({}^{4}G){}^{-6}A_{1}({}^{6}S)$ transitions of Mn²⁺. The equation (2), (3) and (5) in the main text can change to:

$$7B + 7C = \frac{10^{7}}{297} \qquad (6)$$

$$17B + 5C = \frac{10^{7}}{358} \qquad (7)$$

$$E_{2} = \frac{10^{7}}{577} \qquad (8)$$

Connecting equations (6) and (7) above, we can obtain *B* and *C* are 324 cm⁻¹ and 4486cm⁻¹, respectively. The equation (4) in the main text can be simplified as:

$$Dq = \left\{ \frac{36B^2(E_2 - 10B - 5C)}{19B + 7C - E_2} + (10B + 7C - E_2)(10B + 5C - E_2) \right] \frac{1}{100} \right\}^{\frac{1}{2}}$$
(9)

Taking the values of E_2 , B and C into the equation (9), then Dq = 1195 cm⁻¹ is acquired. Thus, we obtain B = 324 cm⁻¹, C = 4486 cm⁻¹ and Dq = 1195 cm⁻¹, respectively.

For Cs₂AgInCl₆:Mn²⁺ systems, the calculation steps are similar to the details discussed above. Thus, the calculation results of the *B*, *C* and *Dq* are 509 cm⁻¹, 5071 cm⁻¹ and =1895 cm⁻¹, respectively.

The detailed descriptions of how to draw the Tanabe-Sugano diagrams

We attach the original references about the Tanabe-Sugano diagrams for d^5 in here¹ (10.1143/JPSJ.9.766), which we draw Figure 8 in the manuscript by reference to this original literature.

1. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan, 1954, 9, 766-779.