Unravelling Structures of Radicals of Kynurenic Acid Formed in the Photoinduced Reactions with Tryptophan and Tyrosine

Olga B. Morozova,^a Maksim P. Geniman,^{a,b} Mikhail S. Panov,^a

Natalya N. Fishman^a, Alexandra V. Yurkovskaya^a, and Peter S. Sherin^{*a}

^aInternational Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia

^bNovosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia

Electronic Supplementary Information

Contents

Caloma C1. Describle activity of material sounded electron transformet different	Page
tautomeric forms of triplet kynurenic acid, ³ KNAH ⁻ , and radical structures formed so far	3
Scheme S2. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet 4-hydroxy quinolone, ³ 4HQNH, and radical structures formed so far	3
Table S1. Calculated HFCCs of 4-hydroxy quinoline (4HQN) radicals of different structure	4
Table S2. Calculated HFCCs of kynurenic acid (KNA) radicals of different structure	5
Table S3. Calculated HFCCs of neutral tryptophan and N-acetyl tryptophan radicals	6
Table S4. HFCCs of neutral N-acetyl tyrosine radical, determined utilizing the CIDNP proportionality relationship between HFCCs and CIDNP intensities detected in the photoreaction of 3,3',4,4'-tetracarboxy benzophenone (TCBP) and N-AcTyr using the known HFCCs for TCBP radicals	7
Fig. S1. 200 MHz 1H CIDNP spectra, obtained in the photoreaction of 0.5 mM 3,3',4,4'-tetracarboxy benzophenone (TCBP) and 2 mM N-acetyl tyrosine in neutral aqueous solution	7
Fig. S2. Correlation between the ¹ H CIDNP intensities of TCBP (circles) P_{1i} detected in its photoreaction with N-acetyl tyrosine, and the corresponding ¹ H HFCCs of the TCBP radical	8
Fig. S3. Correlation between the ¹ H CIDNP intensities P_{1i} of KNA P_{1i} and $-P_{2j}$ of the amino acid detected in the photoreaction between KNA and N-AcTyr, N-AcTrp (subplot b) or L-Trp, and the corresponding ¹ H HFCCs of the radicals KNAH2 ^{•-} (a), N-AcTyrO [•] , N-AcTrp [•] , Trp [•] .	8
Fig. S4. Absorption spectra of neutral aqueous solutions of (a) 0.4 mM 4HQN; (b) 0.4 mM 4HQN and 20 mM N-acetyl tyrosine; (c) 0.4 mM 4HQN and 4 mM L-tryptophan; (d) 0.6 mM KNA; (e) 0.6 mM KNA and 20 mM N-acetyl tyrosine; (f) 0.6 mM 4KNA and 4 mM L-tryptophan.	9

References

Scheme S1. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet kynurenic acid, ³KNAH⁻, and radical structures formed so far.

Scheme S2. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet 4-hydroxy quinolone, ³4HQNH, and radical structures formed so far.

	Radical	g-factor	Atom	HFCC, mT
4 HQNH $^{\bullet-}$ (I)	0-	2.00323	N1	0.108
			H1(NH)	-0.201
	6 3		H2	-0.655
			H3	0.154
			H5	-0.608
	0		H6	0.006
			H7	-0.395
			H8	-0.372
			H4(OH)	
4HQNH•- (II)	OH	2.00295	N1	0.277
			H1(NH)	
			H2	-0.367
	N N		H3	-0.037
			H5	-0.591
			H6	-0.107
			H7	-0.293
			H8	-0.463
			H4(OH)	-0.067
4HQNH ₂ •	OH	2.00295	N1	0.243
			H1(NH)	-0.395
			H2	-0.826
		H3	0.173	
		H5	-0.440	
			H6	-0.016
			H7	-0.328
			H8	-0.194
			H4(OH)	-0.124

Table S1. Calculated HFCCs of 4-hydroxy quinoline (4HQN) radicals of different structures.

	Radical	g-factor	Atom	HFCC, mT
$KNAH^{\bullet}(I)$	5 OH	2.00357	N1	0.100
	6 3		H1(NH)	-0.220
			H(COOH)	
			H3	0.067
	Ö ⁸ Ö		Н5	-0.295
			H6	-0.136
			H7	-0.108
			H8	-0.299
			H4(OH)	
KNAH [•] (II)	0-	2.00321	N1	0.286
			H1(NH)	
			H(COOH)	
			H3	0.127
	H H		Н5	-0.353
	0		H6	-0.296
			H7	-0.059
			H8	-0.473
			H4(OH)	-0.055
KNAH [•] (III)	0-	2.00349	N1	0.196
			H1(NH)	
			H(COOH)	-0.106
			H3	-0.178
			H5	-0.042
			H6	-0.279
			H7	0.060
			H8	-0.279
	011		H4(OH)	
$KNAH_2^{\bullet-}(I)$		2.00325	NI	0.255
			HI(NH)	-0.407
			H(COOH)	
			H3	0.206
	0		H5	-0.288
			H6	-0.11
			H/	-0.1/6
				-0.224
	<u> </u>	2.00220	H4(OH)	-0.103
$KNAH_2^{\bullet}$ (II)		2.00559		0.343
			$\frac{\Pi(\Pi)}{(COOII)}$	
				-0.110
			115 115	0.003
			H6	-0.023
			H7	-0.340
			H8	-0.338
			H4(OH)	-0.037

Table S2. Calculated HFCCs of kynurenic acid (KNA) radicals of different structures.

KNAH2 ^{•–} (III)	0-	2.00364	N1	0.129
			H1(NH)	-0.247
			H(COOH)	-0.119
		H3	-0.239	
	× N ∐ H ∐		H5	-0.065
	0		H6	-0.140
			H7	-0.011
			H8	-0.167
			H4(OH)	

Table S3. Calculated HFCCs of neutral tryptophan and N-acetyl tryprophan radicals.

	Radical	g-factor	Atom	HFCC, mT
Trp•	7•	2.00282	N1	0.313
-	6 5 4 NH_3^+		H2	-0.096
			H4	-0.492
			H5	0.090
	β		H6	-0.425
	0-0-		H7	-0.041
	0		β1	1.776
		β2	0.125	
			α	0.082
N-AcTrp•	• N	2.00284	N1	0.325
_			H2	-0.108
			H4	-0.438
		H5	0.067	
	NH		H6	-0.378
			H7	-0.039
			β1	0.866
			β2	0.818
			α	0.214

Table S4. HFCCs of neutral N-acetyl tyrosine radical, determined utilizing the CIDNP proportionality relationship between HFCCs and CIDNP intensities detected in the photoreaction of 3,3',4,4'-tetracarboxy benzophenone (TCBP) and N-AcTyr using the known HFCCs for TCBP radicals.¹ CIDNP spectrum is shown in Fig. S1, proportionality relationship – in Fig. S2.

	Radical	g-factor	Atom	HFCC, mT
N-AcTyrO•	н	a	H2,6	0.13
-			H3,5	-0.69
		β	0.86	

^a DFT calculations were not performed for N-AcTyr radical; in calculations of CIDNP using Adrian's model, g-factor known for Tyr radical was used, g=2.0041.²

Fig. S1. 200 MHz ¹H CIDNP spectra, obtained in the photoreaction of 0.5 mM 3,3',4,4'- tetracarboxy benzophenone (TCBP) and 2 mM N-acetyl tyrosine in neutral aqueous solution.

Fig. S2. Correlation between the ¹H CIDNP intensities of TCBP (solid circles) P_{1i} and $-P_{2j}$ of the N-acetyl tyrosine (N-AcTyr, open squares) detected in photoreaction between TCBP and N-AcTyr, and the corresponding ¹H HFCCs of the TCBP radicals.¹ Solid line: best fit by the function P_{1i} = $-CA_{1i}$ (C>0). HFCCs for neutral N-AcTyr radical (Table S4) were calculated according to the equation A_{2j} = $C^{-1}P_{2j}$ (fitting to squares).

Fig. S3. Correlation between the ¹H CIDNP intensities P_{1i} of KNA (solid circles) and $-P_{2j}$ of the amino acid (open squares) detected in neutral aqueous solution for the photoreaction between KNA and N-AcTyr (a), N-AcTrp (b) or L-Trp (c), and the corresponding ¹H HFCCs of the radicals KNAH2^{•–} (I) (Table S2), N-AcTyrO[•] (Table S4), N-AcTrp[•] (Table S3), Trp[•] (Table S3). Solid line: best fit by the function $P_{1i}=CA_{1i}$, $P_{2j}=-CA_{2j}$.

Fig. S4. Absorption spectra of neutral aqueous solutions of (a) 0.4 mM 4HQN; (b) 0.4 mM 4HQN and 20 mM N-acetyl tyrosine; (c) 0.4 mM 4HQN and 4 mM L-tryptophan; (d) 0.6 mM KNA; (e) 0.6 mM KNA and 20 mM N-acetyl tyrosine; (f) 0.6 mM 4KNA and 4 mM L-tryptophan. The optical path length was 2 mm.

References

- O. B. Morozova, M. S. Panov, N. N. Fishman and A. V. Yurkovskaya, Phys. Chem. 1. *Chem. Phys.*, 2018, **20**, 21127-21135. M. Tomkiewicz, R. D. McAlpine and M. Cocivera, *Can. J. Chem.*, 1972, **50**, 3849-
- 2. 3856.