Unravelling Structures of Radicals of Kynurenic Acid Formed in the Photoinduced Reactions with Tryptophan and Tyrosine

Olga B. Morozova, ${ }^{\text {a }}$ Maksim P. Geniman, ${ }^{\text {a,b }}$ Mikhail S. Panov, ${ }^{\text {a }}$

Natalya N. Fishman ${ }^{\text {a }}$, Alexandra V. Yurkovskaya ${ }^{\text {a }}$, and Peter S. Sherin ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia

${ }^{b}$ Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia

Electronic Supplementary Information

Contents

Scheme S1. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet kynurenic acid, ${ }^{3} \mathrm{KNAH}^{-}$, and radical structures formed so far

Scheme S2. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet 4-hydroxy quinolone, ${ }^{3} 4 \mathrm{HQNH}$, and radical structures formed so far

Table S1. Calculated HFCCs of 4-hydroxy quinoline (4HQN) radicals of different structure

Table S2. Calculated HFCCs of kynurenic acid (KNA) radicals of different structure

Table S3. Calculated HFCCs of neutral tryptophan and N-acetyl tryptophan radicals

Table S4. HFCCs of neutral N-acetyl tyrosine radical, determined utilizing the CIDNP proportionality relationship between HFCCs and CIDNP intensities detected in the photoreaction of $3,3^{\prime}, 4,4^{\prime}$-tetracarboxy benzophenone (TCBP) and N -AcTyr using the known HFCCs for TCBP radicals

Fig. S1. 200 MHz 1 H CIDNP spectra, obtained in the photoreaction of 0.5

Page

 detected in its photoreaction with N -acetyl tyrosine, and the corresponding ${ }^{1} \mathrm{H}$ HFCCs of the TCBP radicalFig. S3. Correlation between the ${ }^{1} \mathrm{H}$ CIDNP intensities $P_{1 \mathrm{i}}$ of KNA $P_{1 \mathrm{i}}$ and $-P_{2 \mathrm{j}}$ of the amino acid detected in the photoreaction between KNA and N AcTyr, N -AcTrp (subplot b) or L-Trp, and the corresponding ${ }^{1} \mathrm{H}$ HFCCs of the radicals $\mathrm{KNAH}_{2}{ }^{\bullet-}$ (a), $\mathrm{N}^{-A c T y r O}{ }^{\bullet}$, $\mathrm{N}-\mathrm{AcTrp}^{\bullet}$, Trp${ }^{\bullet}$.

Fig. S4. Absorption spectra of neutral aqueous solutions of (a) 0.4 mM 4 HQN ; (b) 0.4 mM 4 HQN and 20 mM N-acetyl tyrosine; (c) 0.4 mM 4 HQN and 4 mM L-tryptophan; (d) 0.6 mM KNA; (e) 0.6 mM KNA and 20 mM N -acetyl tyrosine; (f) 0.6 mM 4 KNA and 4 mM L-tryptophan.

References

Scheme S1. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet kynurenic acid, ${ }^{3} \mathrm{KNAH}^{-}$, and radical structures formed so far.

Scheme S2. Possible pathways of proton-coupled electron transfer to different tautomeric forms of triplet 4-hydroxy quinolone, ${ }^{3} 4 \mathrm{HQNH}$, and radical structures formed so far.

Table S1. Calculated HFCCs of 4-hydroxy quinoline (4HQN) radicals of different structures.

Radical		g-factor	Atom	HFCC, mT
4HQNH* ${ }^{\text {- }}$ (I)		2.00323	N1	0.108
			H1(NH)	-0.201
			H2	-0.655
			H3	0.154
			H5	-0.608
			H6	0.006
			H7	-0.395
			H8	-0.372
			H4(OH)	--
4HQNH ${ }^{-}$(II)		2.00295	N1	0.277
			H1(NH)	--
			H2	-0.367
			H3	-0.037
			H5	-0.591
			H6	-0.107
			H7	-0.293
			H8	-0.463
			H4(OH)	-0.067
4 $\mathrm{HQNH}_{2}{ }^{\text {- }}$		2.00295	N1	0.243
			H1(NH)	-0.395
			H2	-0.826
			H3	0.173
			H5	-0.440
			H6	-0.016
			H7	-0.328
			H8	-0.194
			H4(OH)	-0.124

Table S2. Calculated HFCCs of kynurenic acid (KNA) radicals of different structures.

Radical		g -factor	Atom	HFCC, mT
KNAH ${ }^{---}$(I)		2.00357	N1	0.100
			H1(NH)	-0.220
			$\mathrm{H}(\mathrm{COOH})$	--
			H3	0.067
			H5	-0.295
			H6	-0.136
			H7	-0.108
			H8	-0.299
			$\mathrm{H} 4(\mathrm{OH})$	--
KNAH ${ }^{--}$(II)		2.00321	N1	0.286
			H1(NH)	--
			$\mathrm{H}(\mathrm{COOH})$	--
			H3	0.127
			H5	-0.353
			H6	-0.296
			H7	-0.059
			H8	-0.473
			H4(OH)	-0.055
KNAH ${ }^{\bullet--}$ (III)		2.00349	N1	0.196
			H1(NH)	--
			$\mathrm{H}(\mathrm{COOH})$	-0.106
			H3	-0.178
			H5	-0.042
			H6	-0.279
			H7	0.060
			H8	-0.279
			$\mathrm{H} 4(\mathrm{OH})$	--
$\mathrm{KNAH}_{2}{ }^{\text {- }}$ (I)		2.00325	N1	0.255
			H1(NH)	-0.407
			$\mathrm{H}(\mathrm{COOH})$	--
			H3	0.206
			H5	-0.288
			H6	-0.11
			H7	-0.176
			H8	-0.224
			$\mathrm{H} 4(\mathrm{OH})$	-0.103
$\mathrm{KNAH}_{2}{ }^{\bullet-}$ (II)		2.00339	N1	0.343
			H1(NH)	--
			(COOH)	-0.110
			H3	0.003
			H5	-0.025
			H6	-0.348
			H7	0.067
			H8	-0.338
			H4(OH)	-0.037

$\mathrm{KNAH}_{2}{ }^{\bullet-}$ (III)		2.00364	N1	0.129
			H1(NH)	-0.247
			$\mathrm{H}(\mathrm{COOH})$	-0.119
			H3	-0.239
			H5	-0.065
			H6	-0.140
			H7	-0.011
			H8	-0.167
			H4(OH)	--

Table S3. Calculated HFCCs of neutral tryptophan and N-acetyl tryprophan radicals.

Radical		g -factor	Atom	HFCC, mT
Trp*		2.00282	N1	0.313
			H2	-0.096
			H4	-0.492
			H5	0.090
			H6	-0.425
			H7	-0.041
			β_{1}	1.776
			β_{2}	0.125
			α	0.082
N-AcTrp*		2.00284	N1	0.325
			H2	-0.108
			H4	-0.438
			H5	0.067
			H6	-0.378
			H7	-0.039
			β_{1}	0.866
			β_{2}	0.818
			α	0.214

Table S4. HFCCs of neutral N -acetyl tyrosine radical, determined utilizing the CIDNP proportionality relationship between HFCCs and CIDNP intensities detected in the photoreaction of $3,3^{\prime}, 4,4^{\prime}$-tetracarboxy benzophenone (TCBP) and N-AcTyr using the known HFCCs for TCBP radicals. ${ }^{1}$ CIDNP spectrum is shown in Fig. S1, proportionality relationship - in Fig. S2.

	Radical	g-factor	Atom	HFCC, mT
N-AcTyrO*		a	H2,6	0.13
			H3,5	-0.69
			β	0.86

${ }^{\text {a }}$ DFT calculations were not performed for N -AcTyr radical; in calculations of CIDNP using Adrian's model, g -factor known for Tyr radical was used, $\mathrm{g}=2.0041 .{ }^{2}$

Fig. S1. $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ CIDNP spectra, obtained in the photoreaction of $0.5 \mathrm{mM} \mathrm{3,3}, 4,4^{\prime}$ tetracarboxy benzophenone (TCBP) and 2 mM N -acetyl tyrosine in neutral aqueous solution.

Fig. S2. Correlation between the ${ }^{1} \mathrm{H}$ CIDNP intensities of TCBP (solid circles) $P_{1 \mathrm{i}}$ and $-P_{2 \mathrm{j}}$ of the N -acetyl tyrosine (N -AcTyr, open squares) detected in photoreaction between TCBP and N AcTyr, and the corresponding ${ }^{1} \mathrm{H}$ HFCCs of the TCBP radicals. ${ }^{1}$ Solid line: best fit by the function $P_{1 i}=-C A_{1 i}(C>0)$. HFCCs for neutral N-AcTyr radical (Table S4) were calculated according to the equation $A_{2 \mathrm{j}}=C^{-1} P_{2 \mathrm{j}}$ (fitting to squares).

Fig. S3. Correlation between the ${ }^{1} \mathrm{H}$ CIDNP intensities $P_{1 \mathrm{i}}$ of KNA (solid circles) and $-P_{2 \mathrm{j}}$ of the amino acid (open squares) detected in neutral aqueous solution for the photoreaction between KNA and $\mathrm{N}-\mathrm{AcTyr}$ (a), N-AcTrp (b) or L-Trp (c), and the corresponding ${ }^{1} \mathrm{H}$ HFCCs of the radicals $\mathrm{KNAH}_{2}{ }^{\bullet-}$ (I) (Table S2), $\mathrm{N}-\mathrm{AcTyrO}^{\bullet}$ (Table S4), $\mathrm{N}-\mathrm{AcTrp}^{\bullet}$ (Table S3), Trp• (Table S3). Solid line: best fit by the function $P_{1 \mathrm{i}}=C A_{1 \mathrm{i}}, P_{2 \mathrm{j}}=-C A_{2 \mathrm{j}}$.

Fig. S4. Absorption spectra of neutral aqueous solutions of (a) 0.4 mM 4 HQN ; (b) 0.4 mM 4 HQN and 20 mM N-acetyl tyrosine; (c) 0.4 mM 4 HQN and 4 mM L-tryptophan; (d) 0.6 mM KNA; (e) 0.6 mM KNA and 20 mM N-acetyl tyrosine; (f) 0.6 mM 4 KNA and 4 mM L-tryptophan. The optical path length was 2 mm .

References

1. O. B. Morozova, M. S. Panov, N. N. Fishman and A. V. Yurkovskaya, Phys. Chem. Chem. Phys., 2018, 20, 21127-21135.
2. M. Tomkiewicz, R. D. McAlpine and M. Cocivera, Can. J. Chem., 1972, 50, 38493856.
