Resolving the π -assisted U–N σ_f -bond formation using quantum information theory

Aleksandra Leszczyk,
 a Tibor Dome,
 b,c Paweł Tecmer, a Dariusz Kędziera,
 d and Katharina Boguslawski a

^a Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland; E-mail: ptecmer@fizyka.umk.pl; k.boguslawski@fizyka.umk.pl

^b Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

^c Institute of Astronomy, University of Cambridge, Madingley Road Cambridge, CB3 0HA, United Kingdom

^d Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń

Supplementary Information

S1 Orbital-pair correlation diagrams

S1.1 UO_2^{2+}

Figure S1: Selected orbital-pair correlation measures for the linear UO_2^{2+} molecule obtained from a fpLCCD wave function.

S1.2 NUO $^+$

Figure S2: Selected orbital-pair correlation measures for the linear NUO⁺ molecule obtained from a fpLCCD wave function.

S1.3 Reaction pathway

Figure S3: Orbital-pair correlation measures for the ground state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals.

Figure S4: Orbital-pair correlation measures for the isomer of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S5: Orbital-pair correlation measures for the first transition state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S6: Orbital-pair correlation measures for the second transition state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S7: Orbital-pair correlation measures for the first intermediate state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S8: Orbital-pair correlation measures for the third transition state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S9: Orbital-pair correlation measures for the second intermediate state of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.

Figure S10: Orbital-pair correlation measures for $NUOCl_2$ of the reaction coordinate obtained from a fpLCCD wave function. The values of the single-orbital entropies are coded by the size of the dots corresponding to each orbital. The mutual information values correspond to color and width of lines connecting orbitals. All orbital-pair correlations larger than 0.09 have been plotted.