Supporting Information for

Focal Opening of the Neuronal Plasma Membrane by Shock-induced Bubble Collapse for Drug Delivery. A Coarse-Grained Molecular Dynamic Simulation

Mi Zhou,^{a,b} Tong Wei,^b Lingzhi Gu,^b Hong Yang,^b Ming Li,^b and Yang Zhou^{b,*}

^{*a*} School of Materials Science & Engineering, Beijing Institute of Technology, 100081 Beijing, China;

^b Institute of Chemical Materials, Chinese Academy of Engineering and Physics,
 621900 Mianyang, China.

AUTHOR INFORMATION

Corresponding Author

*Yang Zhou. E-mail: zhouy@caep.cn

Captions

Table S1. The composition of plasma membrane.

Figure S1. Distribution of three characteristic components (SM lipid are red, Cere are orange, CHOL are blue, other lipid molecules are silver).

Figure S2. Illustration of the momentum mirror boundary condition.

Figure S3. Time dependence of the pressure normal to the membrane surface (pressure profile at the membrane position) with $u_p = 0.8 \text{ km} \cdot \text{s}^{-1}$. The gray area represents pressure space generated by bubble collapse. The "a" is the pressure of the shock wave front passing through the membrane interface, and "b" represents the jet begins to generate pressure on the membrane after the bubble collapses.

Table S2. Details of all simulation systems in this work.

Table S3. The pore area (nm²) of different SM content at the $u_p = 0.6$ km/s and D = 40nm.

Table S4. The pore area (nm^2) of PM at different bubble diameters (nm) and shock velocity (km/s).

Composition name	Number	of lipids	Tatal
Composition name	Outer leaflet	Inner leaflet	Totai
Phosphatidylcholine (PC)	2412	1288	3700
Phosphatidylethanolamine (PE)	1093	2017	3110
Sphingomyelin (SM)	892	219	1111
Phosphatidylserine (PS)	0	930	930
Glycolipid (GM1)	135	0	135
Glycolipid (GM3)	135	0	135
Cerebrosides (CERE)	742	0	742
Phosphatidylinositol (PI)	0	484	484
Phosphatidic acid (PA)	0	38	38
Phosphatidylinositol phosphates (PIPs)	0	132	132
Ceramide (CER)	56	55	111
Lysophosphatidylcholine (LPC)	30	15	45
Lysophosphatidylethanolamine (LPE)	15	30	45
Diacylglycerol (DAG)	38	38	76
Cholesterol (CHOL)	4431	4222	8653
Total lipids	9979	9468	19435

 Table S1. The composition of plasma membrane.

Figure S1. Distribution of three characteristic components (SM lipid are red, Cere are orange, CHOL are blue, other lipid molecules are silver).

Figure S2. Illustration of the momentum mirror boundary condition.

Figure S3. Time dependence of the pressure normal to the membrane surface (pressure profile at the membrane position) with $u_p = 0.8 \text{ km} \cdot \text{s}^{-1}$. The gray area represents pressure space generated by bubble collapse. The "a" is the pressure of the shock wave front passing through the membrane interface, and "b" represents the jet begins to generate pressure on the membrane after the bubble collapses.

Systems	Dubble diameter (D)	Shooly yeld of the (lyme /g)	Shock simulation
Systems	Buddle diameter (D)	Shock velocity (km/s)	time (ps)
PM	20	0.7	100
	20	0.8	100
	20	0.9	100
	20	1.0	100
	20	1.1	100
	40	0.6	150
	40	0.7	100
	40	0.8	100
	40	0.9	100
	40	1.0	100
	40	1.1	100
	40	1.2	100
	50	0.7	100
	50	0.8	100

Table S2. Details of all simulation systems in this work.

	50	0.9	100
	50	1.0	100
	50	1.1	100
no-CERE	20	0.7	100
	20	0.8	100
	20	0.9	100
	20	1.0	100
	20	1.1	100
	40	0.6	150
	40	0.7	100
	40	0.8	100
	40	0.9	100
	40	1.0	100
	40	1.1	100
	40	1.2	100
	50	0.7	100
	50	0.8	100
	50	0.9	100
	50	1.0	100
	50	1.1	100
no-CHOL	20	0.7	100
	20	0.8	100
	20	0.9	100
	20	1.0	100
	20	1.1	100
	40	0.6	150
	40	0.7	100
	40	0.8	100
	40	0.9	100
	40	1.0	100
	40	1.1	100
	40	1.2	100
	50	0.7	100
	50	0.8	100
	50	0.9	100
	50	1.0	100
	50	1.1	100
no-SM	20	0.7	100
	20	0.8	100
	20	0.9	100
	20	1.0	100
	20	1.1	100
	40	0.6	150
	40	0.7	100

40	0.8	100
40	0.9	100
40	1.0	100
40	1.1	100
40	1.2	100
50	0.7	100
50	0.8	100
50	0.9	100
50	1.0	100
50	1.1	100
40	0.6	150
40	0.6	150
	40 40 40 40 40 50 50 50 50 50 50 40 40 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S3. The pore area (nm²) of different SM content at the $u_p = 0.6$ km/s and D = 40 nm.

10%SM	0.0	3	7.75
30%SM	0.25	4	13

Table S4. The pore area (nm²) of PM at different bubble diameters (nm) and particle velocity $(u_p, \text{km/s})$.

D	0.6	0.7	0.8	0.9	1.0	1.1	1.2
20	-	18	114	86.25	97.75	100.25	-
40	5.5	296.75	745	498	409.25	317	299
50	18.5	318.75	795	714.75	464	354.5	-