Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

Role of Hydrogen Bonding in Bulk Aqueous Phase Decomposition,
 Complexation, and Covalent Hydration of Pyruvic Acid

Supplementary Material-A

Michael Dave P. Barquilla and Maricris L. Mayes*

Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

Fig. S1A Optimized structures of lactone isomers in gas ${ }^{44}$ with dipole moments (blue arrows) and natural atomic charges (red), calculated at B2PLYP-D3BJ/aug-cc-pVTZ level of theory.

Table S1A Geometric features of pyruvic acid (PA) conformers and enol isomers in gas and aqueous phase (Fig. 1), calculated at B2PLYP-D3BJ/aug-cc-pVTZ level of theory. Bond distances are in angstroms (\AA).

Species	$\begin{gathered} \text { OH bond } \\ \text { (carboxylic and } \\ \text { alcoholic) } \\ \hline \end{gathered}$		C-OH bond (carboxylic)		$\mathrm{C}=\mathrm{O}$ bond (carboxylic)		$\mathrm{C}=\mathrm{O}$ bond (carbonyl)		C-C bond		H-bond		$\begin{aligned} & \mathrm{OH}-\mathrm{O} \\ & \text { Angle } \end{aligned}$	
	Gas	Aq												
Tc	0.975	0.976	1.334	1.325	1.203	1.210	1.215	1.216	1.543	1.543	2.0223	2.0616	118.23	115.61
Tt	0.969	0.972	1.338	1.326	1.208	1.212	1.207	1.213	1.543	1.543	2.3090	2.3409	74.70	72.84
Ct	0.969	0.973	1.354	1.327	1.199	1.209	1.206	1.212	1.550	1.548	2.3128	2.3427	74.60	72.56
							$\mathrm{C}-\mathrm{OH}$	d (alc.*)						
enola	0.968	0.971	1.342	1.329	1.215	1.220	-	-	1.485	1.487	2.2991	2.3312	75.20	73.40
alc.*	0.970	0.971	-	-	-	-	1.354	1.359	-	-	2.0691	2.0966	116.79	115.31
enolb	0.964	0.968	1.341	1.330	1.209	1.218	-	-	1.499	1.492	-	-	-	-
alc.*	0.972	0.971	-	-	-	-	1.348	1.358	-	-	2.0105	2.0701	118.07	115.87
enolc	0.964	0.967	1.355	1.337	1.198	1.213	-	-	1.506	1.493	-	-	-	-
alc.*	0.964	0.967	-	-	-	-	1.352	1.359	-	-	-	-	-	-
enold	0.968	0.971	1.354	1.336	1.205	1.216	-	-	1.492	1.489	2.2782	2.3085	76.11	74.21
alc.*	0.963	0.966	-	-	-	-	1.358	1.361	-	-	-	-	-	-
enole	0.968	0.971	1.346	1.335	1.208	1.216	-	-	1.494	1.491	2.2794	2.3092	75.91	74.07
alc.*	0.963	0.967	-	-	-	-	1.361	1.361	-	-	-	-	-	-
enolf	0.968	0.972	1.347	1.336	1.202	1.214	-	-	1.501	1.493	-	-	-	-
alc.*	0.963	0.967	-	-	-	-	1.373	1.364	-	-	1.9779	1.9938	117.94	116.09

* refers to alcoholic OH group on enol isomers (highlighted)

Fig. S2A Optimized structures and relative energies of the minima on the potential energy surface of pyruvic acid (PA) degradation (Fig. 2), calculated at SMD-CCSD(T)-F12/aug-cc-pVDZ-F12//SMD-B2PLYP-D3BJ/aug-cc-pVTZ level of theory. Relative energies ($\mathrm{kcal} / \mathrm{mol}$) with respect to Tc in aqueous phase.

Fig. S3A Optimized structures for transition states identified in Scheme 1 and Fig. 2, with the corresponding imaginary frequencies in aqueous, calculated at SMD-B2PLYP-D3BJ/aug-cc-pVTZ level of theory. TS5a is an alternative TS from Tc to enolf via a hydride shift from the methyl group to carbonyl oxygen.

		$\begin{gathered} \text { TS-a3 } \\ -643.51 \mathrm{~cm}^{-1} \end{gathered}$
 TS-c2 $-365.69 \mathrm{~cm}^{-1}$		

Fig. S4A Optimized structures of the transition states of conformational switching between pyruvic acid (PA) conformers, PA hydrogen-transferred (PAHT) tautomers and enol isomers found along the PA aqueous potential energy surface degradation, using SMD-B2PLYP-D3BJ/aug-ccpVTZ. Indicated are the imaginary frequencies of the transition states in aqueous phase.

Fig. S5A Interconversion of enol isomers in aqueous phase. Unlike the gas phase, ${ }^{44}$ no transition states were found for enol ${ }_{c}$-enol ${ }_{d}$ and enola-enol ${ }_{d}$ switching. Indicated energies are relative to enol ${ }_{d}$ and calculated using SMD-CCSD(T)-F12/aug-cc-pVDZ-F12//SMD-B2PLYP-D3BJ/aug-cc-pVTZ .

Fig. S6A Temporal dependence of pyruvic acid (PA) degradation species concentration in aqueous phase at $54800 \mathrm{~cm}^{-1}$ energy input and extended to 500 fs timescale. Calculations used RRKM microcanonical coefficients from SMD-CCSD(T)-F12/aug-cc-pVDZ-F12 single point energies and SMD-B2PLYP-D3BJ/aug-cc-pVTZ frequencies.

Fig. S7A Ratios of acetaldehyde to acetic acid in aqueous phase and previous gas phase calculations, ${ }^{44}$ determined at reaction completion ($\mathrm{t}=1 \mathrm{sec}$) within $20000 \mathrm{~cm}^{-1}$ to $100000 \mathrm{~cm}^{-1}$. Calculations used RRKM microcanonical coefficients from SMD-CCSD(T)-F12/aug-cc-pVDZ-F12 single point energies and SMD-B2PLYP-D3BJ/aug-cc-pVTZ frequencies.

Table S2A Calculated parameters of the least-square fit of the Arrhenius plot of pyruvic acid direct decomposition (Fig. 4), 2,2-dihydroxypropanoic acid (DHPA) and DHPA- $\mathrm{H}_{2} \mathrm{O}$ reaction rate coefficients (Fig. 6) in aqueous phase. The three-parameter Arrhenius equation is $\mathrm{k}(\mathrm{T})=$ $\mathrm{A} \mathrm{T}^{\mathrm{n}} \mathrm{e}^{-\mathrm{E}_{\mathrm{A}} / R T}$ and the rate coefficients (k) are calculated from SMD-CCSD(T)-F12/aug-cc-pVDZF12 single point energies and SMD-B2PLYP-D3BJ/aug-cc-pVTZ frequencies.

Reaction	Method	A (s^{-1})	n	$\begin{gathered} \mathrm{E}_{\mathrm{A}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
Tc \rightarrow acetic acid + CO (gas) ${ }^{\text {a }}$	RRKM (N_{2})	3.043×10^{10}	0.90	54.58
Tc \rightarrow acetic acid + CO (TS1)	RRKM ($\mathrm{H}_{2} \mathrm{O}$)	6.09×10^{10}	0.82	52.01
Tc \rightarrow PAHT ${ }_{\text {(}}$ (TS3)	RRKM ($\mathrm{H}_{2} \mathrm{O}$)	3.761×10^{35}	-7.28	19.45
$\mathrm{Tc} \rightarrow \mathrm{Tt}$ (TS-a1)	RRKM ($\mathrm{H}_{2} \mathrm{O}$)	5.563×10^{33}	-6.98	14.30
$\mathrm{Tc} \rightarrow \mathrm{MHC}-\mathrm{CO}_{2}$ (gas) $^{\text {a }}$	RRKM (N_{2})	1.574×10^{13}	0.15	41.03
$\mathrm{PAHT}_{\mathrm{c}} \rightarrow \mathrm{MHC}-\mathrm{CO}_{2}$ (TS7)	RRKM $\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.863×10^{23}	-2.81	34.81
$\mathrm{Tc} \rightarrow$ acetaldehyde $+\mathrm{CO}_{2}$ (gas) ${ }^{\text {a }}$	RRKM (N_{2})	1.717×10^{11}	0.93	72.80
$\mathrm{Tc} \rightarrow$ acetaldehyde $+\mathrm{CO}_{2}$ (TS11)	RRKM ($\mathrm{H}_{2} \mathrm{O}$)	2.079×10^{11}	0.94	75.60
$\mathrm{Tc} \rightarrow \mathrm{PAHT}_{\mathrm{c}}(\mathrm{TS} 3)$	RRKM ($\mathrm{H}_{2} \mathrm{O}$)	3.761×10^{35}	-7.28	19.45
	TST	1.459×10^{13}	0.11	13.48
	TST w/ Wigner	4.068×10^{12}	0.26	13.03
	TST w/ Eckart	8.190×10^{12}	0.17	13.43
$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}} \rightarrow$ DHPA	TST	4.452×10^{10}	-0.29	39.70
	TST w/ Wigner	1.074×10^{10}	-0.14	38.55
	TST w/ Eckart	4.510×10^{-1}	2.96	33.31
Tc- $\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}}{ }^{\prime} \rightarrow$ DHPA	TST w/ Eckart (gas) ${ }^{\text {a }}$	1.226×10^{1}	2.61	31.69
Tc $-2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ DHPA $-\mathrm{H}_{2} \mathrm{O}$	TST	5.430×10^{9}	-0.49	36.14
	TST w/ Wigner	1.221×10^{9}	-0.32	35.00
	TST w/ Eckart	4.121×10^{-1}	2.50	30.21
	TST w/ Eckart (gas) ${ }^{\text {a }}$	8.574×10^{2}	1.32	28.47

${ }^{a}$ Ref. 44

Fig. S8A Effect of pressure on the rates of all the direct pyruvic acid decomposition channels and $\mathrm{MHC}-\mathrm{CO}_{2}$ formation from PAHT_{c} in aqueous phase. Pressure is evaluated between 1 to 760 torr at 0.10 torr increment for 400 K to 1000 K at 100 K interval and the RRKM rates (k) are calculated from SMD-CCSD(T)-F12/aug-cc-pVDZ-F12 single point energies and SMD-B2PLYP-D3BJ/aug-cc-pVTZ frequencies.

 gas phase	----	gas phase
aqueous phase	aqueous phase	aqueous phase
$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right.$---carboxyl and carbonyl group)	$\begin{gathered} \mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}} \\ \left(\mathrm{H}_{2} \mathrm{O}--\mathrm{C}_{\text {carboxyl }}-\mathrm{C}_{\text {carbonyl }} \text { plane }\right) \end{gathered}$	$\begin{gathered} \mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}}^{\prime} \\ \left(\mathrm{H}_{2} \mathrm{O} \text {---carboxyl and methyl group }\right) \end{gathered}$

Fig. S9A Tc monohydrates in gas and aqueous phase. Structures and NBO natural atomic charges (red) are calculated using B2PLYP-D3BJ/aug-cc-pVTZ. SMD was used for all aqueous phase calculations.

Fig. S10A Ct monohydrates in gas and aqueous phase. Structures and NBO natural atomic charges (red) are calculated using B2PLYP-D3BJ/aug-cc-pVTZ. SMD was used for all aqueous phase calculations.

Fig. S11A Tt monohydrates in gas and aqueous phase. Structures and NBO natural atomic charges (red) are calculated using B2PLYP-D3BJ/aug-cc-pVTZ. SMD was used for all aqueous phase calculations.

Fig. S12A PA dihydrates. Structures and NBO natural atomic charges (red) are calculated using B2PLYP-D3BJ/aug-cc-pVTZ. SMD was used for all aqueous phase calculations.

Table S3A Relative thermodynamic properties ($\mathrm{kcal} / \mathrm{mol}$) of PA and PA hydrates with respect to their lowest energy conformers, in gas and aqueous phase at 1 atm and 298.15 K , calculated at $\operatorname{CCSD}(\mathrm{T})$-F12/aug-cc-pVDZ-F12//B2PLYP-D3/aug-cc-pVTZ level of theory. Aqueous phase calculations used SMD for the structure and energy correction.

Species		Gas phase			Aqueous phase			Intrinsicsolvation
		rel. $\mathrm{H}^{\circ}{ }_{\text {gas }}$	rel. -TS ${ }_{\text {gas }}$	rel. $\mathrm{G}^{\circ}{ }^{\text {gas }}$	rel. $\mathrm{H}^{\circ}{ }_{\text {aq }}$	rel. $-\mathrm{TS}^{\text {aq }}$	rel. $\mathrm{G}^{\text {a }}{ }^{\text {aq }}$	
PA								
	Tc	0.00	0.00	0.00	0.00	0.00	0.00	-7.73
	Ct	4.28	-0.88	3.40	-2.15	-0.10	-2.25	-13.37
	Tt	2.75	-0.36	2.39	-1.05	-0.14	-1.20	-11.31
PA monohydrated complexes								
Tc	$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$	0.00	0.00	0.00	0.00	0.00	0.00	-16.50
	$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}}$	-	-	-	2.02	-1.05	0.97	-
	$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}^{\text {b }}$	1.47	-0.65	0.82	7.26	-0.73	6.53	-10.79
Ct	$\mathrm{Ct}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$	1.07	0.10	1.17	-2.28	-0.52	-2.80	-20.47
	$\mathrm{Ct}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}}$	6.44	-1.45	4.99	-0.24	-1.33	-1.57	-23.06
	$\mathrm{Ct}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{c}}$	6.53	-1.53	5.00	5.21	-1.11	4.10	-17.40
Tt	$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$	0.19	0.16	0.35	-2.34	-0.52	-2.87	-19.71
	$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{b}}$	5.45	-1.45	4.00	0.39	-1.10	-0.71	-21.21
	$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{c}}$	4.44	-1.69	2.75	4.94	-0.87	4.07	-15.17
	$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{d}}$	5.00	-1.68	3.32	5.69	-1.33	4.36	-15.45
PA dihydrated complexes								
	$\mathrm{Tc}-2 \mathrm{H}_{2} \mathrm{O}$	0.00	0.00	0.00	0.00	0.00	0.00	-19.26
	Tc-2 $\mathrm{H}_{2} \mathrm{O}^{\prime}$	1.47	-0.77	0.71	-	-	-	-
	$\mathrm{Ct}-2 \mathrm{H}_{2} \mathrm{O}$	1.59	0.23	1.82	-2.80	0.97	-1.83	-22.91
	$\mathrm{Tt}-2 \mathrm{H}_{2} \mathrm{O}$	-1.03	1.30	0.26	0.53	0.11	0.64	-18.88

[^0]Table S4A Geometric features and relative energies of PA-water complexes containing intermolecular H -bonds in gas and aqueous phase (Fig. S9A to S12A). Orientation b of PA- $\mathrm{H}_{2} \mathrm{O}$ complexes is not included since the only dominant interaction found is $\mathrm{p}-\pi^{*}$.

Complex	H -bond location	Bond length, \AA		Δ distance $^{\text {a }}$, \AA	$\mathrm{OH}-\mathrm{O}$ angles		Relative G°	
		Gas	Aq		Gas	Aq	Gas	Aq
$\mathrm{PA}-\mathrm{H}_{2} \mathrm{O}$								
$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$	$\mathrm{OH}_{\text {carboxylic }}$ - $\mathrm{O}_{\text {water }}$	1.746	1.667	-0.079	171.10	162.05	0.00	0.00
	$\mathrm{OH}_{\text {water }}$-OCarbonyl	2.032	2.521	0.489	131.07	103.65		
$\mathrm{Tc}-\mathrm{H}_{2} \mathrm{O}^{\prime}{ }^{\prime}$	$\mathrm{O}_{\text {carboxylic }}$ - $\mathrm{HO}_{\text {Water }}$	1.945	1.913	-0.032	161.13	178.93	0.82	6.53
	$\mathrm{O}_{\text {water }}$ - $\mathrm{HC}_{\text {Methyl }}$	2.393	2.998	0.605	131.98	108.99		
$\mathrm{Ct}-\mathrm{H}_{2} \mathrm{O}_{\text {a }}$	$\mathrm{OH}_{\text {carboxylic }}$ - Wwater	1.746	1.616	-0.130	157.65	174.65	1.17	-2.80
	$\mathrm{O}_{\text {carboxylic }}-\mathrm{HO}_{\text {water }}$	2.015	3.248	1.233	134.33	90.77		
$\mathrm{Ct}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{c}}$	$\mathrm{O}_{\text {carbony }}$ - $\mathrm{HO}_{\text {water }}$	2.111	1.922	-0.189	162.33	164.28	5.00	4.10
	$\mathrm{O}_{\text {carboxylic }}$ - $\mathrm{HO}_{\text {Water }}$	2.410	2.843	0.433	130.10	101.35		
Tt- $\mathrm{H}_{2} \mathrm{O}_{\mathrm{a}}$	$\mathrm{OH}_{\text {carboxylic }}$ - Wwater	1.755	1.620	-0.135	158.11	174.66	0.35	-2.87
	$\mathrm{O}_{\text {carboxylic }}$ - $\mathrm{HO}_{\text {Water }}$	2.032	3.232	1.200	133.78	91.05		
$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{O}_{\mathrm{c}}$	$\mathrm{O}_{\text {carbony }}$ - $\mathrm{HO}_{\text {water }}$	2.092	1.941	-0.151	162.54	170.33	2.75	4.07
$\mathrm{Tt}-\mathrm{H}_{2} \mathrm{Od}_{\mathrm{d}}$	$\mathrm{O}_{\text {carbony }}$ - $\mathrm{HO}_{\text {water }}$	1.958	1.904	-0.054	157.99	174.60	3.32	4.36
	$\mathrm{O}_{\text {water }}-\mathrm{HC}_{\text {Methy }}$	2.456	2.952	0.496	121.30	131.52		
PA-2 $\mathrm{H}_{2} \mathrm{O}$								
Tc-2 $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{OH}_{\text {carboxylic }}-\mathrm{O}_{\text {water1 }}$	1.728	1.650	-0.078	169.90	162.27	0.00	0.00
	$\mathrm{OH}_{\text {water1 }}-\mathrm{O}_{\text {Carbony }}$	2.053	2.489	0.436	128.72	105.93		
	$\mathrm{O}_{\text {carboxylic }}-\mathrm{HO}_{\text {Water2 }}$	1.917	1.890	-0.027	164.49	177.87		
	$\mathrm{O}_{\text {water2 }}-\mathrm{HC}_{\text {Methyl }}$	2.446	3.044	0.598	127.89	106.05		
$\mathrm{Ct}-2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{OH}_{\text {carboxylic }}-\mathrm{O}_{\text {Water1 }}$	1.713	1.599	-0.114	159.68	174.86	1.82	-1.83
	$\mathrm{O}_{\text {carboxylic }}-\mathrm{HO} \mathrm{Water}$	2.105	3.228	1.123	128.45	90.89		
	$\mathrm{O}_{\text {carbony }} 1-\mathrm{HO}$ water2	2.762	2.804	0.042	110.24	103.48		
	$\mathrm{O}_{\text {carboxylic }}-\mathrm{HO}_{\text {water2 }}$	2.006	1.883	-0.123	175.71	166.60		
Tt-2 $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{OH}_{\text {carboxylic }}$ - $\mathrm{O}_{\text {water }}$	1.704	1.685	-0.019	150.70	150.64	0.26	0.64
	$\mathrm{O}_{\text {carboxllic }}-\mathrm{HO}_{\text {water }}$	3.095	3.397	0.302	94.86	83.79		
	$\mathrm{O}_{\text {carbony }}$ - $\mathrm{HO}_{\text {water }}$	1.997	2.111	0.114	164.91	169.55		
	$\mathrm{O}_{\text {water }}-\mathrm{HO}_{\text {water }}$	1.875	1.878	0.003	159.39	160.93		

[^1]

Scheme S1A. Thermodynamic cycle of pyruvic acid (PA) monohydration to 2,2-dyhydroxypropanoic acid (DHPA) from PA- $\mathrm{H}_{2} \mathrm{O}$.

Scheme S2A. Thermodynamic cycle of pyruvic acid (PA) dihydration to 2,2-dyhydroxypropanoic acid (DHPA)- $\mathrm{H}_{2} \mathrm{O}$ from PA-2 $\mathrm{H}_{2} \mathrm{O}$ complexes.

Fig. S13A Minima and transition state structures along the potential energy surface of 2,2-dihydroxypropanoic acid (DHPA) formation from mono- (Top) and dihydrated Tc (bottom), calculated using SMD-B2PLYP-D3BJ/aug-cc-pVTZ. Imaginary frequencies of the transition states are also indicated. Shown on the rightmost panels are the electron density map of the transition state structures. Energies of the structures are shown in Table 6.

[^0]: ${ }^{a}$ Intrinsic Gibbs free energy of solvation: $\Delta \mathrm{G}^{\circ}{ }_{\text {Solv }}=\mathrm{G}^{\circ}{ }_{\mathrm{aq}}-\mathrm{G}^{\circ}{ }_{\text {gas }}$

[^1]: ${ }^{a}$ Change in H -bond length from gas to aqueous phase: Δ distance $=$ distance $_{\text {aq }}-$ distance $_{\text {gas }}$

