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S1. DENSITY MATRIX FORMALISM

A. Excitonic Transition Dipole Moment

Charge displacement and transitions occur for relative wavefunction transitions only,
when electron and hole alter their distance. We consider their relative movement in terms
of the relative coordinate ~ρ = ~re−~rh. This should not be confused with the density matrix
ρ used later. The non-stationary dipole moment of excitons will thus be expressed as

~M(t) = −qe ~re(t) + qe ~rh(t) = −qe ~re(t) + qe
(
~re(t)− ~ρ(t)

)
= −qe~ρ(t) (S1)

This quantity, however, is linked to the velocity of correlated, relative electron-hole-
movement, which can be understood once we look at its derivative.

d ~M(t)
dt

= −qe
d ~ρ(t)
dt

= −qe ~vrel(t) (S2)

Dealing with quantum systems, however, a certain property is given as a matrix ele-
ment resulting from an operator representing the property of interest. Here, we will be
concerned with the expectation value of the dipole moment operator

~̂M = −qe~̂r or in the excitonic formulation ~̂MX = −qe~̂ρ. (S3)

For the sake of clear readability we simply write M always implying vectorial properties,
where necessary, depicting symbol visuals as readable as possible, although the operator
always acts on the relative coordinate of an intraexcitonic wavefunction.

B. Equation of Motion under Perturbation

For a discussion of properties in the frequency domain, we have to establish the tem-
poral behavior first. To do so, we resort to the von-Neumann equation describing the
temporal evolution of a system’s density matrix ρ.

ρ̇ = − i

~
[
Ĥ, ρ

]
, (S4)

where Ĥ is the Hamiltonian. For a proper description, we expand ρ = ρ0 + ∆ρ to be
a small perturbation around the unperturbed equilibrium state ρ0. For the cases of Ĥ
and ρ we skip writing them with their explicite time-dependence (t). In contrast we use
E(t) for the perturbing THz field, to distinguish it from the time invariant system Eigen-
energies Ej of the excitonic series in first order perturbation theory, used later. Further
~E(t) and ~̂M are considered to be parallel so that the scalar product reduces to a scalar
multiplication.
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Given the full Hamiltonian Ĥ = Ĥ0 − M̂ · E(t) = Ĥ0 − qe ρ̂ · E(t) including the
perturbation M̂ · E(t) given by the excitonic transition dipole moment qe ρ̂ expressed
through the relative displacement operator ρ̂. Inserting into Equation S4, we obtain

∆ρ̇ = − i

~
[
Ĥ0 − M̂ · E(t), ρ0 + ∆ρ

]
. (S5)

In the small perturbation limit, the terms
[
Ĥ0, ρ0

]
and

[
M̂,∆ρ

]
vanish. This is, because

the unperturbed ground state ρ0 and the ground state Hamiltonian H0 commute and
additionally ∆ρ does not further couple to the transition dipole moment. We arrive at

∆ρ̇ = − i

~
{[
Ĥ0,∆ρ

]
−
[
M̂, ρ0

]
E(t)

}
(S6)

As we will be concerned with specific elements of the matrix ∆ρ̇, say ∆ρ̇j′j, they can be se-
lected through 〈j′|...|j〉. Additionally, we implement relaxation mechanisms of population
(j′ = j) and polarization (j′ 6= j) terms through γj′j∆ρj′j

〈j′|∆ρ̇|j〉 = ∆ρ̇j′j = − i

~
{
〈j′|

[
Ĥ0,∆ρ

]
|j〉 − 〈j′|

[
M̂, ρ0

]
|j〉E(t)

}
− γj′j∆ρj′j. (S7)

Once the commutators get expanded, the operator products can be resolved by inserting
the identity matrix through a full basis 1 = ∑

k |k〉 〈k|. The expression then reads

∆ρ̇j′j =− i

~
∑
k

{H0,j′k ∆ρkj −∆ρj′kH0,kj − (Mj′kρ0,kj − ρ0,j′kMkj)E(t)}−γj′j∆ρj′j (S8)

To further simplify, we invoke the implications of small perturbation theory, namely

∆ρj′j =

 0 j′ = j, population remains constant
∆ρj′j j′ 6= j

This will later eliminate contributions from population relaxation to any expectation
value, leading to dephasing being the only relevant relaxation parameter.

ρ0,j′j =

 ρ0,j′j j′ = j, initial population
0 j′ 6= j, initial polarization

H0,j′k =

 Ej′ j′ = k, ground state energy of j′

0 j′ 6= k, initial

Mj′k =

 0 j′ = k, transitions require changing states
qe ρj′k j′ 6= k,

where, again, ρ is the relative e-h-displacement operator, describing the state of relative
excitonic motion. Regarding these sets of implications, the sum over k can be reduced,
to obtain the final equation

∆ρ̇j′j = − i

~
{(Ej′ − Ej)∆ρj′j − (ρ0,jj − ρ0,j′j′)Mj′jE(t)} − γj′j∆ρj′j (S9)

Finally, we use (Ej′−Ej)/~ = Ej′j/~ = ωj′j and reduce the expression

∆ρ̇j′j = −(iωj′j + γj′j)∆ρj′j + i

~
(ρ0,jj − ρ0,j′j′)Mj′jE(t) (S10)
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C. Detailed Derivation of Equation 9

In the following discussion we derive how the polarizability translates into mobility
for excitons. We calculate the transition dipole moment of the exciton in the linear
excitation regime (precisely: the net transition dipole moment over all transitions within
the intraexcitonic series). In the density matrix formalism, an expectation value is given
as the trace of the product between the time-dependent density matrix ρ and the operator
matrix (here M). We skip writing them with an explicite time-dependence. In contrast
we use E(t) for the perturbing THz field, to distinguish it from the time invariant system
Eigen-energies Ej of the excitonic series in first order perturbation theory.

〈M〉 = Tr {Mρ} =
∑
j′,j

Mjj′ ρj′j =
∑
j′,j

(−qe ρjj′ ρj′j) =
∑
j′,j

Mj′j(t) (S11)

expanding the density matrix as before (ρ = ρ0 +∆ρ) we rewrite Equation S11 by directly
applying Equation S3

〈M〉 = Tr {Mρ0}+ Tr {M∆ρ} =
∑
j′,j

(−qe ρjj′ ρ0,j′j)︸ ︷︷ ︸∑
j′,j M̃0,jj′

+
∑
j′,j

(−qe ρjj′ ∆ρj′j)︸ ︷︷ ︸∑
j′,j M̃jj′ (t)

(S12)

and identify the stationary dipole moment intrinsic to the equilibrium state ∑j′,j M̃0,jj′ as
well as the time-dependent dipole moment ∑j′,j M̃jj′(t) containing the response through
polarizability as will become clear later. Going back to the discussion from the main text
and Equation S2 above, we establish the time derivative of 〈M〉 to find a link to 〈vrel〉.
We evaluate d 〈M〉 /dt and find according to Equation S12

〈Ṁ〉 =
∑
j′,j

Mjj′ ∆ρ̇j′j = −qe
∑
j′,j

ρ
jj′

∆ρ̇j′j = −qe ˙〈ρ〉 = −qe 〈vrel〉 (S13)

We remark, that in time-dependent 1st order perturbation the transition dipole moments
(−qeρjj′) are time independent, while the time dependence is reflected in the density ma-
trix ρ. Simultaneously, the equation above immediately suggests to insert Equation S10,
which delivers

〈Ṁ〉 =
∑
j′,j

(iωjj′ + γjj′)Mjj′∆ρj′j. (S14)

It should be noted, that the second term of Equation S10 can not sustain in Equation S13,
since the double sum j, j′ (running through all indices twice) invoked by the definition of
the expectation value is generating (ρ0,jj − ρ0,j′j′) and (ρ0,j′j′ − ρ0,jj) in pairs canceling
each other. This is also not abrogated by simultaneously running through the Mj′j, since
the matrix M is symmetric (as ρ is a multiplicative operator).
In Equation S13 this expectation value is linked to the velocity, which we can also write
as

〈vrel〉 =
∑
j′,j

vrel,jj′∆ρj′j. (S15)
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So, unifying the relations established, we can deduce

〈Ṁ〉 = −qe 〈vrel〉
m∑

j′,j(iωjj′ + γjj′)Mjj′∆ρj′j︸ ︷︷ ︸
M̃jj′ (t)

= −qe
∑
j′,j vrel,jj′∆ρj′j︸ ︷︷ ︸

ṽrel,jj′ (t)

(S16)

Now, this relation holds in the time as well as frequency domain. In the time domain,
both dipole moment M as well as the relative velocity vrel are tied to their response
functions, the polarizability α [1] and mobility µ [2] via convolution (⊗) with the external
perturbation field E(t). To write down an equivalent expression in the frequency domain,
a Fourier Transformation (FT ) is necessary.

M̃(t) = α(t)⊗ E(t) ṽrel(t) = µ(t)⊗ E(t)
m FT

M̃(ω) = α(ω) · E(ω) ṽrel(ω) = µ(ω) · E(ω)

These relations can also be applied to Equation S16. Once the fourier transformed
excitation fields E(ω) are dropped on both sides, Equation 2 from the main text is recov-
ered: ∑

j′,j

(iωjj′ + γjj′)αjj′(ω) = −qe
∑
j′,j

µjj′(ω) = −qeµX(ω) (S17)

D. ω scaling of polarizability

In the following, we want to rewrite the Equation S17 above and motivate Equation
17 for excitonic mobility from the main text.

µX(ω) = − 1
qe

∑
j′j

(iωj′j + γj′j)αj′j(ω) = −iω
qe

∑
j′j

αj′j(ω), (S18)

At first, we have to stress the fact, that the second equality relation can only hold pairwise,
i.e. for transition pairs j → j′ + j′ → j. This, in turn, means the following inequation
holds

− 1
qe

(iωj′j + γj′j)αj′j(ω) 6= −iω
qe
αj′j(ω), (S19)

but becomes an equation, as soon as both, the corresponding down- or upwards-transition
are considered, i.e. a pair of resonant and anti-resonant transition, identified in the
summed terms on the left and right hand side of the equation. We can state

− 1
qe
{(iωj′j + γj′j)αj′j(ω) + (iωjj′ + γjj′)αjj′(ω)} = −iω

qe
{αj′j(ω) + αjj′(ω)} . (S20)

S5



So we are left to prove this alternative equation. It is clear, that this proof can only
be comprehensible, considering the specific form of α(ω). For that matter, we resort to
Equation 1 from the main text

αj′j(ω)= (bj′ − bj)
~

|〈j′| ~̂M ·~e |j〉|2 · 1
ω − ωj′j+iγj′j

, (S21)

Proofing Equation S20 to be true, requires to plug Equation S21 in Eq. S20, first on the
left and then on the right hand side. We spare the lengthy mathematical conversion steps
and find, that both sides come down to

µj′j = −(bj′ − bj)
~qe

|〈j′| ~̂M ·~e |j〉|2ω
{

γj′j − γjj′ + i (ωj′j − ωjj′)
(ω − ωj′j + iγj′j) (ω − ωjj′ + iγjj′)

}
, (S22)

which in turn immediately reveals, that our new full quantum mechanical transformation
formula in fact captures the explicite ω scaling, however, assuming that transition pairs
are concerned. Still, although it is necessary to stress this fact, it poses no constraint,
since the entirety of up- and downwards transitions (i.e. resonant and anti-resonant)
within the intraexcitonic series has to be considered anyway. The ω scaling remains, once
the summation over all j′, j of the exciton series is performed in Equation S18.

S2. MODELING OF EXCITONS

We model two-dimensional Wannier-Mott excitons in CdSe NPLs. As we have shown
in our previous work [3, 4], NPLs are characterized by robust excitons with high binding
energy in the order of hundreds meV due to the reduced dielectric screening, the high
effective electron and hole masses and the confinement into a few layer. In this case the
Coulomb attraction between electron and hole creates bound exciton states, showing a
strong correlated motion of both particles. Hence, as the excitons form correlated states,
excitation of the hole from a single THz-photon in the valance band (VB) simultaneously
implies a similar electron transition in the conduction band (CB). As the calculation of
either polarizability or mobility requires knowledge about exciton transition energies and
dipole moments, we first determine the exciton energies and wavefunctions for different
states taking selection rules into account.

We model the properties of the excitons in CdSe NPLs using the slowly-varying enve-
lope approximation of two-dimensional Wannier excitons. According to the effective mass
theory, the exciton hamiltonian is given by [3, 5]:

HX = p2
e

2me

+ p2
h

2mh

+ Vconf (re) + Vconf (rh) + Vc(re − rh) (S23)

where Vconf (re(h)) is the electron (hole) confinement potential and Vc(re − rh) is the
Coulomb interaction. 2D NPLs are strongly confined in z-direction, allowing for the
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exciton Hamiltonian to be separated into in-plane (IP) and z-oriented parts [3, 5].

(
H(ze, zh) +HIP

X (ρe, ρh)
) ΨX︷ ︸︸ ︷
|Ψz

X〉 |ΨIP
X 〉 = (S24)(

Econf + EIP
X

)
|Ψz

X〉 |ΨIP
X 〉 ,

where ρi describes the particle coordinate in the x-y-plane, Econf and Ψz
X(ze, zh) are the

confinement energy and wavefunction resulting from solving the single electron (hole)
Schrödinger Equation in the z-direction. EIP

X and ΨIP
X (ρe, ρh) are the in-plane excitonic

energy and wavefunction obtained by numerically solving the in-plane (IP) Hamiltonian
HIP
X . Based on ref [3, 6] in the weak confinement regime, using relative and center-of-mass

(COM) coordinates (~ρ = ~ρe − ~ρh and ~RX = me~ρe+mh~ρe
mX

)) allows for further separation of
the in-plane wavefunction. In this case, the exciton will be described by center-of-mass
and relative motion.

HIP
X (~ρ, ~RX)︷ ︸︸ ︷(

Hrel
X (~ρ) +HCOM

X (~RX)
) |ΨIPX 〉︷ ︸︸ ︷
|Ψrel

X 〉 |ΨCOM
X 〉 = (S25)(

Erel
X + ECOM

X

)
|Ψrel

X 〉 |ΨCOM
X 〉 ,

where Ψrel
X (~ρ) (ΨCOM

X (~RX)) and Erel
X (ECOM

X ) are the wavefunction and energy of the
relative and center-of-mass Hamiltonian, respectively. The system and its solutions have
been described in detail in [3].
The coupling between exciton and THz-photon depends on the dipole charge displacement
~ρe − ~ρh, (H ′ = ~MX · ~eE(t) = −qe(~ρe − ~ρh) · ~eE(t)) and the corresponding expectation
value for the transition dipole moment can be calculated as follows:

−qe〈Ψf
X |(~ρe − ~ρh) · ~e |Ψi

X〉 = −qe〈Ψz,f
X |Ψ

z,i
X 〉〈Ψ

COM,f
X |ΨCOM,i

X 〉〈Ψrel,f
X |~ρ · ~e |Ψrel,i

X 〉 (S26)

As we can clearly see, the dipole will act only on the relative motion leaving unity between
the equal initial and final states of the center-of-mass (COM) and z-related products,
respectively, that can not be adressed by THz-photons. Hence, COM wavefunctions do
not interact with the THz-field and the actual exciton movement does not transport
charge. Instead, transitions only occur within the series of relative wavefunctions, when
electron and hole alter their distance. Excitons in two-dimensional materials experience
pronounced dielectric screening, leading to a non-hydrogenic Rydberg series, where for
example no degenerancy between states with the same principal quantum number n but
different orbital angular momentum m occurs [5]. Our calculation is based on ref. [3]
and the there mentioned formalism and material constants. The coulomb interaction
in bound electron-hole-pairs is treated using the Rytova-Keldysh potential Vc, a widely
accepted approach. This takes the dielectric screening of the exciton wave function due
to the dielectric contrast between the semiconductor NPLs and the surrounding ligands
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and solvent properly into account [3, 7, 8].

Vc(ρ) = −πe
2

2εrs

[
H0

(
ρ

rs

)
− Y0

(
ρ

rs

)]
, (S27)

where rs is the screening length, H0 and Y0 are the Struve and Neumann functions of
order 0, respectively. In contrast to the interaction potential for the simple 2D hydrogen
model, this non-locally-screened interaction potential can only be treated numerically. In
this case, the relative wave function

Ψrel
X,n,m(ρ) =

∑
ñ,|m̃|<ñ

C(ñ, m̃)ϕñ,m̃(ρ, θ) (S28)

is scaled by the reduced effective band massmr = memh

me +mh

and modified by the non-local
dielectric screening potential. They are expanded in terms of 2D hydrogenic states

ϕñ,m̃(ρ, θ) =
√

1
2π

√√√√( 2
(2ñ− 1)ab

)2 (ñ− |m̃| − 1)!
(ñ+ |m̃| − 1)!(2ñ− 1) ·

eim̃θ
(

4ρ
(2ñ− 1)ab

)|m̃|
e
− 2ρ

(2ñ−1)abL
2|m̃|
ñ−|m̃|−1

(
4ρ

(2ñ− 1)ab

)
, (S29)

where Lα
ñ′

(
x) are the orthogonal associated Laguerre polynomials, ñ = 1, 2, 3.. is the

principal quantum number, m̃ = ±1,±2,±3...±n− 1 is the angular momentum number.
The states are labeled s for m̃=0, and p for m̃ = ±1 , d for m̃ = ±2. ab is the effective
exciton Bohr radius and the coefficients C(ñ, m̃) are obtained by solving the matrix prob-
lem with the eigenfunctions ϕñ,m̃(ρ, θ). n and m, as also used in the main text, represent
the quasi hydrogenic series obtained for the exciton using a Rytova–Keldysh potential.
Within this framework, we compute in Table S1, the energy separation and the intra
excitonic transition matrix elements according to Equation S26 for all allowed transitions
within the 1st to 5th shell. Notably, the angular part of the transition dipole matrix
element creates transition selection rules among the intra excitonic series, for instance,
allowing processes that obey ∆m = ±1. We note that for a purely coulombic potential,
states with the same quantum number n, yet different orbital angular moment m (e.g. 2s
and 2p) are degenerate. As shown in table S1, the non-local dielectric screening clearly
removes this degeneracy, producing separation between these states and thus leading to
a non-hydrogenic Rydberg series.

TABLE S1: Transition energies and -dipole matrix elements
for different allowed state couples within the intra excitonic
series.

n,m → n’,m’ En′,m′ − En,m (meV) M/qe (Å)
1s→2p 77.80 1.89
1s→3p 128.00 0.77
1s→4p 142.00 0.45
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1s→5p 146.00 0.31
2p→2s 23.80 18.62
2p→3d 39.12 11.44
2p→3s 57.07 4.08
2p→4d 63.44 2.91
2p→4s 66.01 2.54
2p→5d 68.22 2.13
2p→5s 68.65 2.08
2s→3p 26.41 16.30
2s→4p 40.43 7.80
2s→5p 44.56 5.65
3d→3p 11.09 39.26
3d→4f 21.44 21.453d→4p 25.11 17.30
3d→5f 28.04 14.803d→5p 29.24 13.98
3p→3s 6.85 48.39
3p→4d 13.22 35.40
3p→4s 15.80 30.20
3p→5d 18.00 26.29
3p→5s 18.43 25.79
3s→4p 7.17 47.40
3s→5p 11.30 38.90
4f→4d 2.87 65.304f→5d 7.65 46.084d→4p 0.80 114.00
4d→5f 3.73 59.504d→5p 4.93 53.80
4p→4s 1.78 80.20
4p→5d 3.98 57.30
4p→5s 4.41 56.30
4s→5p 2.35 73.00
5f→5p 0.15 160.00
5p→5s 0.28 145.00

S3. THERMAL DISTRIBUTION OF STATES

As our 2D excitons are bosons they obey a Bose-Einstein distribution among the states
of the excitonic series at finite temperature. This results in a finite population of excited
states at elevated temperatures. The exciton ground state is ∼ 200meV [3, 4] below the
continuum, so that a number of states can be occupied at room temperature. According
to Bose-Einstein distribution

B(Ej − µcp) = 1
eEj−µcp/kBT − 1 , (S30)

with µcp the chemical potential of state j. We define Bjj′ = B(Ej−µcp)−B(E ′j−µcp) and
the occupation difference between initial and final state of the THz transition. According
to Ref. [9] the polarizability is proportional to this population difference, so that we
obtain from Equation 1 in the main text

αj′j(ω)= 1
NX

(Bj′ −Bj)
~

|〈j′| ~̂M ·~e |j〉|2 · 1
ω − ωj′j+iγj′j

, (S31)

whereNX =
∫∞

0 D(E)B(E−µcp)δ(E−Ej)dE is the number of excitons in the nanoplatelet,
considered as 1 in our calculations. This equation reflects the well known fact, that a
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system becomes transparent as it approaches equal occupation of initial and final state,
i.e. bjj′ = 0. Occupation number B and probability b relate by Bj/NX = bj. As the Bose
distribution changes with increasing temperature, the polarizability becomes temperature
dependent, and hence the polarizability is altered due to varying population differences
between the states, which have non zero matrix element.

S10



S4. APPROACHING EXPERIMENTAL THZ DATA

As discussed in the main text, Equation (2) can not only be seen as an instruction, how
to extract mobility from modeled polarizability, but also as a tool to recover information
about polarizability from the experimentally accessible conductivity and mobility data,
respectively. The flow chart in Figure S1 is a proposed guiding thread on how to treat
experimental data, which can be fit in a final step using the state energies and transition
matrix elements, obtained form modeling of the nanosystem in a first step. The thermal
population of states has to be taken into account for any experiments at room tempera-
ture. Using the above-mentioned system parameters and constants the polarizability of
each transition can be summed up to a spectrally-dependent trial function, which still
depends on the dephasing γj′j, a parameter which may be treated with an initial guess
(e.g. from calculation on the exciton-phonon interaction or from other methods like four
wave mixing). Then the fit routine optimizes the trial function spectrum in a least square
routine to fit the experimental data and obtain the polarizabilities.

However, it has to be mentioned, that optical excitation of colloidal semiconductor
nanoparticle samples in a time-resolved THz-probe experiment will typically lead not
only to excitons, but also to quasi-free electrons and holes. Unless designed otherwise,
one has to separate the specific contributions of each particle by e.g. comparing different
pump-probe delay times, certain sample dimensions, temperature or by a priori entering
information about the electronic system of photoexcited electrons and holes before using
the suggested steps above for retrieving αX from µX .
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FIG. S1. Flow Chart proposing, how to extract the excitonic polarizability from a given exper-
imental mobility spectrum.
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