Electronic Supplementary Information for

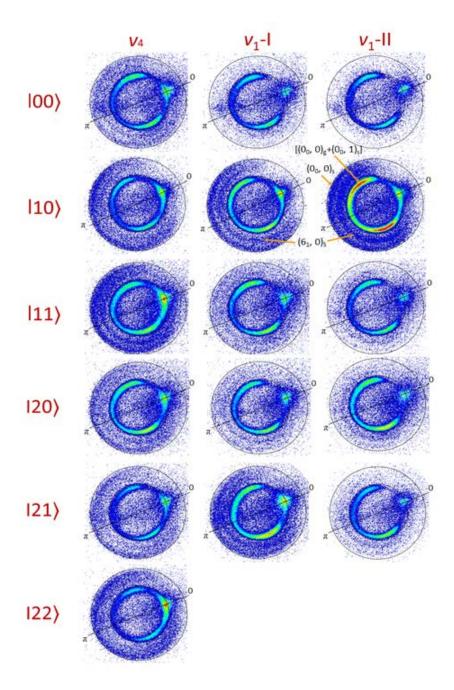
Stretching-mode specificity in the Cl + CH₃D(v_1 -I, v_1 -II, and v_4

= 1; $|jK\rangle$) reactions: Dependency on the initial $|jK\rangle$ selectivity

Sohidul Mondal, Huilin Pan, 1,2 and Kopin Liu 1,3,4*

This pdf contains

Fig. S1 (raw images) and Table S1 (rotational energy disposal)


¹ Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10699, Taiwan

² Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China

³ Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

⁴ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China

^{*} Email: kliu@po.iams.sinica.edu.tw

Fig. S1 Raw difference-images, obtained by [(IR-on) – $(1-n_s/n_0)$ ·(IR-off)], of the probed CH₂D($0_0/6_1$) products in 16 ro-vibrationally selected reactions of Cl + CH₃D(v_4 , v_1 -I, v_1 -II; $|jK\rangle$) at $E_c = 5.4$ kcal mol⁻¹.

Table S1 Comparison of the averaged rotational energy, $\langle E_R \rangle$ in kcal mol⁻¹, of the $(0_0, 0)$ product pairs in both the stretch-excited and the ground-state reactions of Cl + CH₃D. The $\langle E_R \rangle$ values and the quoted uncertainties (\pm two standard deviations) were deduced from the measured TKER distributions of the corresponding $(0_0, 0)_{s/g}$ pairs acquired in three to five independent experiments (see text for details).

<i>jK</i> >	$(0_0, 0)_g$	$(0_0,0)_s$		
		v_4	v_1 -I	v ₁ -II
00>	0.52 ± 0.20	3.01 ± 0.32	2.86 ± 0.32	2.79 ± 1.06
10>		2.52 ± 0.21	2.54 ± 0.25	2.40 ± 0.14
11>		3.54 ± 0.20	3.16 ± 1.16	3.05 ± 0.30
20>		3.22 ± 0.20	3.46 ± 0.16	3.02 ± 0.28
21)		3.24 ± 0.36	3.15 ± 0.98	3.02 ± 0.68
22}		2.98 ± 0.04		