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Fraction of the FSA species: ct/ct, cv/ct, and cagg/cr.

The integrated intensity (/) of the free FSA anion is given as Ir = &icr, where & is the molar
extinction coefficient, and cr is the concentration of the free FSA anion in the LiFSA/ES solutions.
Here, we note that no coordination of FSA anions to Li-ions occurs in the dilute solutions (<2.0
mol dm™3). Thus, all of the FSA anions exist as a free FSA in the bulk, resulting in the relation: cr;
= cr to determine the & value (= I¢/cr). In the cri-range of 2.0-2.5 mol dm™, the Li ions coexist as
two types of mononuclear Li-ion complexs, i.e., [Li(ES)4]" and contact ion-pair [Li(ES).(FSA)u]
as described in the manuscript. The ¢, (concentration of the bound FSA) is thus calculated by ¢, =
cr — cr, where ct is the total concentration of FSA anions in solutions, and then the & can be
determined from the relation, I, = &,co. At >3.0 mol dm™, the aggregate FSA coexists with both
free and bound FSA species in the solutions. The concentration of aggregate FSA (cagg) is thus
obtained as follows, cagg = cT — cr + cv. The fraction of free, bound (CIP), and aggregate FSA
species in the solutions are thus calculated by ci/ct, cv/ct, and cagg/cT, respectively.

Table S1. Molar ratio (salt: solvent), concentrations of LiFSA salt (cLi), ES (cEs), density (d), and
refractive index (n2) for LIFSA/ES solutions.

LiFSA/ES system

LiFSA : ES cLi/ mol dm™ ces/ mol dm™ d/ gcm™ n

- 0 13.2 1.430 1.44
1:525 0.25 12.9 1.441 1.44
1:24.1 0.5 12.8 1.465 1.44
1:16.0 0.75 12.3 1.480 1.44
1:12.0 1.0 12.1 1.495 1.44
1:5.24 2.0 10.8 1.557 1.44
1:4.02 2.5 10.3 1.586 1.44
1:3.24 3.0 9.7 1.610 1.44
1:2.50 3.6 9.1 1.644 1.44
1:2.11 4.0 8.5 1.668 1.43
1:1.50 4.9 7.4 1.713 1.43
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Figure S1. c1i dependences of ionic conductivity (filled circles) and viscosity (open circles) for

LiFSA/ES solutions at 298 K.
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Figure S2. The optimized geometries of (a) isolated ES, (b) Li*-ES complex, (c) [Li(ES)4]*
complex, and (d) [Li2(ES)3(FSA)1]" complex and their LUMO energies obtained from DFT

calculations.



[Li,(ES);(FSA),]" complex

Figure S3. The location of LUMOs on the optimized [Li2(ES)3;(FSA):]" complex using DFT
calculations.
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Figure S4. Cycling performance (red, left axis) and coulomb efficiency (blue, right axis) of the
(a) 3.6 mol dm™ and (b) 1.0 mol dm=> LiFSA/ES solutions. The coulombic efficiencies at the
initial cycle are 63.4% and 63.8% for the 3.6 and 1.0 mol dm~ solutions, respectively.



