Supporting Information

First principle investigation on the Na-ion storage in two-dimensional boron-rich B₂N, B₃N, and B₅N

Xingyi Zhou^a, Fang Liu^a, Xianfei Chen^{a,c*}, Yi Huang^{b,c*}, Peicong Zhang^{a,c}, Beibei Xiao^d, Wentao

Zhang^{a,c}, Lianli Wang^e

^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

^b College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China

^c State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China

^d School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

e School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

^{*} Corresponding author. Email: <u>chenxianfei2014@cdut.edu.cn; huangyi@cdut.cn;</u>

Figure S1. The relaxed configurations of B_2N with adsorbed fluorine atom. The energies are referenced by the configuration with the highest energy.

Figure S2. Snap shots of the AIMD simulations performed at 400 K for (a) $Na_{1.5}B_2N$, (b) Na_2B_3N , (c) Na_4B_5N , and (d) $Na_{3.3}B_5N$ electrode with a time interval of 2ps.

Figure S3. The volume change rate of the emerged stable intermediates.

Figure S4. AIMD simulations of the recovery process of (a) B_2N , (b) B_3N , and (c) B_5N electrode with fully removed Na ions. The snap shots are taken with a time interval of 2ps.